使用Elasticsearch中的copy_to來提高搜索效率


在今天的這個教程中,我們來着重講解一下如何使用Elasticsearch中的copy來提高搜索的效率。比如在我們的搜索中,經常我們會遇到如下的文檔:

    {
        "user" : "雙榆樹-張三",
        "message" : "今兒天氣不錯啊,出去轉轉去",
        "uid" : 2,
        "age" : 20,
        "city" : "北京",
        "province" : "北京",
        "country" : "中國",
        "address" : "中國北京市海淀區",
        "location" : {
          "lat" : "39.970718",
          "lon" : "116.325747"
        }
    }

在這里,我們可以看到在這個文檔中,我們有這樣的幾個字段:

     "city" : "北京",
     "province" : "北京",
     "country" : "中國",

它們是非常相關的。我們在想是不是可以把它們綜合成一個字段,這樣可以方便我們的搜索。假如我們要經常對這三個字段進行搜索,那么一種方法我們可以在must子句中使用should子句運行bool查詢。這種方法寫起來比較麻煩。有沒有一種更好的方法呢?

我們其實可以使用Elasticsearch所提供的copy_to來提高我們的搜索效率。我們可以首先把我們的index的mapping設置成如下的項(這里假設我們使用的是一個叫做twitter的index)。

    PUT twitter
    {
      "mappings": {
        "properties": {
          "address": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "age": {
            "type": "long"
          },
          "city": {
            "type": "keyword",
            "copy_to": "region"
          },
          "country": {
            "type": "keyword",
            "copy_to": "region"
          },
          "province": {
            "type": "keyword",
            "copy_to": "region"
          },
          "region": {
            "type": "text",
            "store": true
          },
          "location": {
            "type": "geo_point"
          },
          "message": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "uid": {
            "type": "long"
          },
          "user": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          }
        }
      }
    }

在這里,我們特別注意如下的這個部分:

        "city": {
          "type": "keyword",
          "copy_to": "region"
        },
        "country": {
          "type": "keyword",
          "copy_to": "region"      
        },
        "province": {
          "type": "keyword",
          "copy_to": "region"
        },
        "region": {
          "type": "text"
        }

我們把city, country及province三個項合並成為一個項region,但是這個region並不存在於我們文檔的source里。當我們這么定義我們的mapping的話,在文檔被索引之后,有一個新的region項可以供我們進行搜索。

我們可以采用如下的數據來進行展示:

    POST _bulk
    { "index" : { "_index" : "twitter", "_id": 1} }
    {"user":"雙榆樹-張三","message":"今兒天氣不錯啊,出去轉轉去","uid":2,"age":20,"city":"北京","province":"北京","country":"中國","address":"中國北京市海淀區","location":{"lat":"39.970718","lon":"116.325747"}}
    { "index" : { "_index" : "twitter", "_id": 2 }}
    {"user":"東城區-老劉","message":"出發,下一站雲南!","uid":3,"age":30,"city":"北京","province":"北京","country":"中國","address":"中國北京市東城區台基廠三條3號","location":{"lat":"39.904313","lon":"116.412754"}}
    { "index" : { "_index" : "twitter", "_id": 3} }
    {"user":"東城區-李四","message":"happy birthday!","uid":4,"age":30,"city":"北京","province":"北京","country":"中國","address":"中國北京市東城區","location":{"lat":"39.893801","lon":"116.408986"}}
    { "index" : { "_index" : "twitter", "_id": 4} }
    {"user":"朝陽區-老賈","message":"123,gogogo","uid":5,"age":35,"city":"北京","province":"北京","country":"中國","address":"中國北京市朝陽區建國門","location":{"lat":"39.718256","lon":"116.367910"}}
    { "index" : { "_index" : "twitter", "_id": 5} }
    {"user":"朝陽區-老王","message":"Happy BirthDay My Friend!","uid":6,"age":50,"city":"北京","province":"北京","country":"中國","address":"中國北京市朝陽區國貿","location":{"lat":"39.918256","lon":"116.467910"}}
    { "index" : { "_index" : "twitter", "_id": 6} }
    {"user":"虹橋-老吳","message":"好友來了都今天我生日,好友來了,什么 birthday happy 就成!","uid":7,"age":90,"city":"上海","province":"上海","country":"中國","address":"中國上海市閔行區","location":{"lat":"31.175927","lon":"121.383328"}}

在Kibnana中執行上面的語句,它將為我們生產我們的twitter索引。同時我們可以通過如下的語句來查詢我們的mapping:

我們可以看到twitter的mapping中有一個新的被稱作為region的項。它將為我們的搜索帶來方便。

那么假如我們想搜索country:中國,province:北京 這樣的記錄的話,我們可以只寫如下的一條語句就可以了:

    GET twitter/_search 
    {
      "query": {
        "match": {
          "region": {
            "query": "中國 北京",
            "minimum_should_match": 4
          }
        }
      }
    }

下面顯示的是搜索的結果:

    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 5,
          "relation" : "eq"
        },
        "max_score" : 0.8114117,
        "hits" : [
          {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 0.8114117,
            "_source" : {
              "user" : "雙榆樹-張三",
              "message" : "今兒天氣不錯啊,出去轉轉去",
              "uid" : 2,
              "age" : 20,
              "city" : "北京",
              "province" : "北京",
              "country" : "中國",
              "address" : "中國北京市海淀區",
              "location" : {
                "lat" : "39.970718",
                "lon" : "116.325747"
              }
            }
          },
          {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "2",
            "_score" : 0.8114117,
            "_source" : {
              "user" : "東城區-老劉",
              "message" : "出發,下一站雲南!",
              "uid" : 3,
              "age" : 30,
              "city" : "北京",
              "province" : "北京",
              "country" : "中國",
              "address" : "中國北京市東城區台基廠三條3號",
              "location" : {
                "lat" : "39.904313",
                "lon" : "116.412754"
              }
            }
          },
          {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "3",
            "_score" : 0.8114117,
            "_source" : {
              "user" : "東城區-李四",
              "message" : "happy birthday!",
              "uid" : 4,
              "age" : 30,
              "city" : "北京",
              "province" : "北京",
              "country" : "中國",
              "address" : "中國北京市東城區",
              "location" : {
                "lat" : "39.893801",
                "lon" : "116.408986"
              }
            }
          },
          {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "4",
            "_score" : 0.8114117,
            "_source" : {
              "user" : "朝陽區-老賈",
              "message" : "123,gogogo",
              "uid" : 5,
              "age" : 35,
              "city" : "北京",
              "province" : "北京",
              "country" : "中國",
              "address" : "中國北京市朝陽區建國門",
              "location" : {
                "lat" : "39.718256",
                "lon" : "116.367910"
              }
            }
          },
          {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "5",
            "_score" : 0.8114117,
            "_source" : {
              "user" : "朝陽區-老王",
              "message" : "Happy BirthDay My Friend!",
              "uid" : 6,
              "age" : 50,
              "city" : "北京",
              "province" : "北京",
              "country" : "中國",
              "address" : "中國北京市朝陽區國貿",
              "location" : {
                "lat" : "39.918256",
                "lon" : "116.467910"
              }
            }
          }
        ]
      }
    }

這樣我們只對一個region進行操作就可以了,否則我們需要針對country, city及province分別進行搜索。

如何查看copy_to的內容

在之前的mapping中,我們對region字段加入了如下的一個屬性:

          "region": {
            "type": "text",
            "store": true
          }

這里的store屬性為true,那么我們可以通過如下的命令來查看文檔的region的內容:

GET twitter/_doc/1?stored_fields=region

那么它顯示的內容如下:

    {
      "_index" : "twitter",
      "_type" : "_doc",
      "_id" : "1",
      "_version" : 1,
      "_seq_no" : 0,
      "_primary_term" : 1,
      "found" : true,
      "fields" : {
        "region" : [
          "北京",
          "北京",
          "中國"
        ]
      }
    }

如果你想了解更多關於Elastic Stack,請參閱文章“Elasticsearch簡介”


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM