springboot中實現kafka指定offset消費


kafka消費過程難免會遇到需要重新消費的場景,例如我們消費到kafka數據之后需要進行存庫操作,若某一時刻數據庫down了,導致kafka消費的數據無法入庫,為了彌補數據庫down期間的數據損失,有一種做法我們可以指定kafka消費者的offset到之前某一時間的數值,然后重新進行消費。

首先創建kafka消費服務

@Service
@Slf4j
//實現CommandLineRunner接口,在springboot啟動時自動運行其run方法。
public class TspLogbookAnalysisService implements CommandLineRunner {
    @Override
    public void run(String... args) {
        //do something
    }
}

kafka消費模型建立

kafka server中每個主題存在多個分區(partition),每個分區自己維護一個偏移量(offset),我們的目標是實現kafka consumer指定offset消費。

在這里使用consumer-->partition一對一的消費模型,每個consumer各自管理自己的partition。

kafka consumer partition

@Service
@Slf4j
public class TspLogbookAnalysisService implements CommandLineRunner {
    //聲明kafka分區數相等的消費線程數,一個分區對應一個消費線程
    private  static final int consumeThreadNum = 9;
    //特殊指定每個分區開始消費的offset
    private List<Long> partitionOffsets = Lists.newArrayList(1111,1112,1113,1114,1115,1116,1117,1118,1119);
   
    private ExecutorService executorService = Executors.newFixedThreadPool(consumeThreadNum);

    @Override
    public void run(String... args) {
        //循環遍歷創建消費線程
        IntStream.range(0, consumeThreadNum)
                .forEach(partitionIndex -> executorService.submit(() -> startConsume(partitionIndex)));
    }
}

kafka consumer對offset的處理

聲明kafka consumer的配置類

private Properties buildKafkaConfig() {
    Properties kafkaConfiguration = new Properties();
    kafkaConfiguration.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "");
    kafkaConfiguration.put(ConsumerConfig.GROUP_ID_CONFIG, "");
    kafkaConfiguration.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "");
    kafkaConfiguration.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "");
    kafkaConfiguration.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "");
    kafkaConfiguration.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "");
    kafkaConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"");
    kafkaConfiguration.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "");
    ...更多配置項

    return kafkaConfiguration;
}

創建kafka consumer,處理offset,開始消費數據任務

private void startConsume(int partitionIndex) {
    //創建kafka consumer
    KafkaConsumer<String, byte[]> consumer = new KafkaConsumer<>(buildKafkaConfig());

    try {
        //指定該consumer對應的消費分區
        TopicPartition partition = new TopicPartition(kafkaProperties.getKafkaTopic(), partitionIndex);
        consumer.assign(Lists.newArrayList(partition));

        //consumer的offset處理
        if (collectionUtils.isNotEmpty(partitionOffsets)  &&  partitionOffsets.size() == consumeThreadNum) {
            Long seekOffset = partitionOffsets.get(partitionIndex);
            log.info("partition:{} , offset seek from {}", partition, seekOffset);
            consumer.seek(partition, seekOffset);
        }
        
        //開始消費數據任務
        kafkaRecordConsume(consumer, partition);
    } catch (Exception e) {
        log.error("kafka consume error:{}", ExceptionUtils.getFullStackTrace(e));
    } finally {
        try {
            consumer.commitSync();
        } finally {
            consumer.close();
        }
    }
}

消費數據邏輯,offset操作

private void kafkaRecordConsume(KafkaConsumer<String, byte[]> consumer, TopicPartition partition) {
    while (true) {
        try {
            ConsumerRecords<String, byte[]> records = consumer.poll(TspLogbookConstants.POLL_TIMEOUT);
            //具體的處理流程
            records.forEach((k) -> handleKafkaInput(k.key(), k.value()));

            //🌿很重要:日志記錄當前consumer的offset,partition相關信息(之后如需重新指定offset消費就從這里的日志中獲取offset,partition信息)
            if (records.count() > 0) {
                String currentOffset = String.valueOf(consumer.position(partition));
                log.info("current records size is:{}, partition is: {}, offset is:{}", records.count(), consumer.assignment(), currentOffset);
            }
    
            //offset提交        
            consumer.commitAsync();
        } catch (Exception e) {
            log.error("handlerKafkaInput error{}", ExceptionUtils.getFullStackTrace(e));
        }
    }
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM