Python繪制3D圖形


來自:https://www.jb51.net/article/139349.htm

3D圖形在數據分析、數據建模、圖形和圖像處理等領域中都有着廣泛的應用,下面將給大家介紹一下如何使用python進行3D圖形的繪制,包括3D散點、3D表面、3D輪廓、3D直線(曲線)以及3D文字等的繪制。

准備工作:

python中繪制3D圖形,依舊使用常用的繪圖模塊matplotlib,但需要安裝mpl_toolkits工具包,安裝方法如下:windows命令行進入到python安裝目錄下的Scripts文件夾下,執行: pip install --upgrade matplotlib即可;linux環境下直接執行該命令。

安裝好這個模塊后,即可調用mpl_tookits下的mplot3d類進行3D圖形的繪制。

下面以實例進行說明。

1、3D表面形狀的繪制

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
  
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
  
# Make data
u = np.linspace( 0 , 2 * np.pi, 100 )
v = np.linspace( 0 , np.pi, 100 )
x = 10 * np.outer(np.cos(u), np.sin(v))
y = 10 * np.outer(np.sin(u), np.sin(v))
z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
  
# Plot the surface
ax.plot_surface(x, y, z, color = 'b' )
  
plt.show()

球表面,結果如下:

2、3D直線(曲線)的繪制

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
  
mpl.rcParams[ 'legend.fontsize' ] = 10
  
fig = plt.figure()
ax = fig.gca(projection = '3d' )
theta = np.linspace( - 4 * np.pi, 4 * np.pi, 100 )
z = np.linspace( - 2 , 2 , 100 )
r = z * * 2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label = 'parametric curve' )
ax.legend()
  
plt.show()

這段代碼用於繪制一個螺旋狀3D曲線,結果如下:

3、繪制3D輪廓

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
  
fig = plt.figure()
ax = fig.gca(projection = '3d' )
X, Y, Z = axes3d.get_test_data( 0.05 )
cset = ax.contour(X, Y, Z, zdir = 'z' , offset = - 100 , cmap = cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir = 'x' , offset = - 40 , cmap = cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir = 'y' , offset = 40 , cmap = cm.coolwarm)
  
ax.set_xlabel( 'X' )
ax.set_xlim( - 40 , 40 )
ax.set_ylabel( 'Y' )
ax.set_ylim( - 40 , 40 )
ax.set_zlabel( 'Z' )
ax.set_zlim( - 100 , 100 )
  
plt.show()

繪制結果如下:

4、繪制3D直方圖

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
  
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
x, y = np.random.rand( 2 , 100 ) * 4
hist, xedges, yedges = np.histogram2d(x, y, bins = 4 , range = [[ 0 , 4 ], [ 0 , 4 ]])
  
# Construct arrays for the anchor positions of the 16 bars.
# Note: np.meshgrid gives arrays in (ny, nx) so we use 'F' to flatten xpos,
# ypos in column-major order. For numpy >= 1.7, we could instead call meshgrid
# with indexing='ij'.
xpos, ypos = np.meshgrid(xedges[: - 1 ] + 0.25 , yedges[: - 1 ] + 0.25 )
xpos = xpos.flatten( 'F' )
ypos = ypos.flatten( 'F' )
zpos = np.zeros_like(xpos)
  
# Construct arrays with the dimensions for the 16 bars.
dx = 0.5 * np.ones_like(zpos)
dy = dx.copy()
dz = hist.flatten()
  
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color = 'b' , zsort = 'average' )
  
plt.show()

繪制結果如下:

5、繪制3D網狀線

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
  
  
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
  
# Grab some test data.
X, Y, Z = axes3d.get_test_data( 0.05 )
  
# Plot a basic wireframe.
ax.plot_wireframe(X, Y, Z, rstride = 10 , cstride = 10 )
  
plt.show()

繪制結果如下:

6、繪制3D三角面片圖

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
  
  
n_radii = 8
n_angles = 36
  
# Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
radii = np.linspace( 0.125 , 1.0 , n_radii)
angles = np.linspace( 0 , 2 * np.pi, n_angles, endpoint = False )
  
# Repeat all angles for each radius.
angles = np.repeat(angles[..., np.newaxis], n_radii, axis = 1 )
  
# Convert polar (radii, angles) coords to cartesian (x, y) coords.
# (0, 0) is manually added at this stage, so there will be no duplicate
# points in the (x, y) plane.
x = np.append( 0 , (radii * np.cos(angles)).flatten())
y = np.append( 0 , (radii * np.sin(angles)).flatten())
  
# Compute z to make the pringle surface.
z = np.sin( - x * y)
  
fig = plt.figure()
ax = fig.gca(projection = '3d' )
  
ax.plot_trisurf(x, y, z, linewidth = 0.2 , antialiased = True )
  
plt.show(

繪制結果如下:

7、繪制3D散點圖

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
  
  
def randrange(n, vmin, vmax):
  '''''
  Helper function to make an array of random numbers having shape (n, )
  with each number distributed Uniform(vmin, vmax).
  '''
  return (vmax - vmin) * np.random.rand(n) + vmin
  
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
  
n = 100
  
# For each set of style and range settings, plot n random points in the box
# defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
for c, m, zlow, zhigh in [( 'r' , 'o' , - 50 , - 25 ), ( 'b' , '^' , - 30 , - 5 )]:
  xs = randrange(n, 23 , 32 )
  ys = randrange(n, 0 , 100 )
  zs = randrange(n, zlow, zhigh)
  ax.scatter(xs, ys, zs, c = c, marker = m)
  
ax.set_xlabel( 'X Label' )
ax.set_ylabel( 'Y Label' )
ax.set_zlabel( 'Z Label' )
  
plt.show()

繪制結果如下:

8、繪制3D文字

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
  
  
fig = plt.figure()
ax = fig.gca(projection = '3d' )
  
# Demo 1: zdir
zdirs = ( None , 'x' , 'y' , 'z' , ( 1 , 1 , 0 ), ( 1 , 1 , 1 ))
xs = ( 1 , 4 , 4 , 9 , 4 , 1 )
ys = ( 2 , 5 , 8 , 10 , 1 , 2 )
zs = ( 10 , 3 , 8 , 9 , 1 , 8 )
  
for zdir, x, y, z in zip (zdirs, xs, ys, zs):
  label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
  ax.text(x, y, z, label, zdir)
  
# Demo 2: color
ax.text( 9 , 0 , 0 , "red" , color = 'red' )
  
# Demo 3: text2D
# Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
ax.text2D( 0.05 , 0.95 , "2D Text" , transform = ax.transAxes)
  
# Tweaking display region and labels
ax.set_xlim( 0 , 10 )
ax.set_ylim( 0 , 10 )
ax.set_zlim( 0 , 10 )
ax.set_xlabel( 'X axis' )
ax.set_ylabel( 'Y axis' )
ax.set_zlabel( 'Z axis' )
  
plt.show(

繪制結果如下:

9、3D條狀圖

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
  
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
for c, z in zip ([ 'r' , 'g' , 'b' , 'y' ], [ 30 , 20 , 10 , 0 ]):
  xs = np.arange( 20 )
  ys = np.random.rand( 20 )
  
  # You can provide either a single color or an array. To demonstrate this,
  # the first bar of each set will be colored cyan.
  cs = [c] * len (xs)
  cs[ 0 ] = 'c'
  ax.bar(xs, ys, zs = z, zdir = 'y' , color = cs, alpha = 0.8 )
  
ax.set_xlabel( 'X' )
ax.set_ylabel( 'Y' )
ax.set_zlabel( 'Z' )
  
plt.show()

繪制結果如下:

以上所述是小編給大家介紹的python繪制3D圖形,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復大家的。在此也非常感謝大家對腳本之家網站的支持


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM