原文地址:https://www.learnopencv.com/deep-learning-based-human-pose-estimation-using-opencv-cpp-python/
COCO輸出格式:
鼻子– 0,脖子– 1,右肩– 2,右肘– 3,右腕– 4,左肩– 5,左肘– 6,左腕– 7,右臀部– 8,右膝蓋– 9 ,右腳踝– 10,左髖– 11,左膝– 12,LAnkle – 13,右眼– 14,左眼– 15,右耳– 16,左耳– 17,背景– 18
模型文件:
input: "image" input_dim: 1 input_dim: 3 input_dim: 1 # This value will be defined at runtime input_dim: 1 # This value will be defined at runtime layer { name: "conv1_1" type: "Convolution" bottom: "image" top: "conv1_1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } layer { name: "pool1_stage1" type: "Pooling" bottom: "conv1_2" top: "pool1_stage1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1_stage1" top: "conv2_1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "pool2_stage1" type: "Pooling" bottom: "conv2_2" top: "pool2_stage1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2_stage1" top: "conv3_1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } layer { name: "conv3_4" type: "Convolution" bottom: "conv3_3" top: "conv3_4" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu3_4" type: "ReLU" bottom: "conv3_4" top: "conv3_4" } layer { name: "pool3_stage1" type: "Pooling" bottom: "conv3_4" top: "pool3_stage1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3_stage1" top: "conv4_1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3_CPM" type: "Convolution" bottom: "conv4_2" top: "conv4_3_CPM" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu4_3_CPM" type: "ReLU" bottom: "conv4_3_CPM" top: "conv4_3_CPM" } layer { name: "conv4_4_CPM" type: "Convolution" bottom: "conv4_3_CPM" top: "conv4_4_CPM" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu4_4_CPM" type: "ReLU" bottom: "conv4_4_CPM" top: "conv4_4_CPM" } layer { name: "conv5_1_CPM_L1" type: "Convolution" bottom: "conv4_4_CPM" top: "conv5_1_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_1_CPM_L1" type: "ReLU" bottom: "conv5_1_CPM_L1" top: "conv5_1_CPM_L1" } layer { name: "conv5_1_CPM_L2" type: "Convolution" bottom: "conv4_4_CPM" top: "conv5_1_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_1_CPM_L2" type: "ReLU" bottom: "conv5_1_CPM_L2" top: "conv5_1_CPM_L2" } layer { name: "conv5_2_CPM_L1" type: "Convolution" bottom: "conv5_1_CPM_L1" top: "conv5_2_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_2_CPM_L1" type: "ReLU" bottom: "conv5_2_CPM_L1" top: "conv5_2_CPM_L1" } layer { name: "conv5_2_CPM_L2" type: "Convolution" bottom: "conv5_1_CPM_L2" top: "conv5_2_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_2_CPM_L2" type: "ReLU" bottom: "conv5_2_CPM_L2" top: "conv5_2_CPM_L2" } layer { name: "conv5_3_CPM_L1" type: "Convolution" bottom: "conv5_2_CPM_L1" top: "conv5_3_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_3_CPM_L1" type: "ReLU" bottom: "conv5_3_CPM_L1" top: "conv5_3_CPM_L1" } layer { name: "conv5_3_CPM_L2" type: "Convolution" bottom: "conv5_2_CPM_L2" top: "conv5_3_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_3_CPM_L2" type: "ReLU" bottom: "conv5_3_CPM_L2" top: "conv5_3_CPM_L2" } layer { name: "conv5_4_CPM_L1" type: "Convolution" bottom: "conv5_3_CPM_L1" top: "conv5_4_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 512 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_4_CPM_L1" type: "ReLU" bottom: "conv5_4_CPM_L1" top: "conv5_4_CPM_L1" } layer { name: "conv5_4_CPM_L2" type: "Convolution" bottom: "conv5_3_CPM_L2" top: "conv5_4_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 512 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_4_CPM_L2" type: "ReLU" bottom: "conv5_4_CPM_L2" top: "conv5_4_CPM_L2" } layer { name: "conv5_5_CPM_L1" type: "Convolution" bottom: "conv5_4_CPM_L1" top: "conv5_5_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 38 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "conv5_5_CPM_L2" type: "Convolution" bottom: "conv5_4_CPM_L2" top: "conv5_5_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 19 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage2" type: "Concat" bottom: "conv5_5_CPM_L1" bottom: "conv5_5_CPM_L2" bottom: "conv4_4_CPM" top: "concat_stage2" concat_param { axis: 1 } } layer { name: "Mconv1_stage2_L1" type: "Convolution" bottom: "concat_stage2" top: "Mconv1_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage2_L1" type: "ReLU" bottom: "Mconv1_stage2_L1" top: "Mconv1_stage2_L1" } layer { name: "Mconv1_stage2_L2" type: "Convolution" bottom: "concat_stage2" top: "Mconv1_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage2_L2" type: "ReLU" bottom: "Mconv1_stage2_L2" top: "Mconv1_stage2_L2" } layer { name: "Mconv2_stage2_L1" type: "Convolution" bottom: "Mconv1_stage2_L1" top: "Mconv2_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage2_L1" type: "ReLU" bottom: "Mconv2_stage2_L1" top: "Mconv2_stage2_L1" } layer { name: "Mconv2_stage2_L2" type: "Convolution" bottom: "Mconv1_stage2_L2" top: "Mconv2_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage2_L2" type: "ReLU" bottom: "Mconv2_stage2_L2" top: "Mconv2_stage2_L2" } layer { name: "Mconv3_stage2_L1" type: "Convolution" bottom: "Mconv2_stage2_L1" top: "Mconv3_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage2_L1" type: "ReLU" bottom: "Mconv3_stage2_L1" top: "Mconv3_stage2_L1" } layer { name: "Mconv3_stage2_L2" type: "Convolution" bottom: "Mconv2_stage2_L2" top: "Mconv3_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage2_L2" type: "ReLU" bottom: "Mconv3_stage2_L2" top: "Mconv3_stage2_L2" } layer { name: "Mconv4_stage2_L1" type: "Convolution" bottom: "Mconv3_stage2_L1" top: "Mconv4_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage2_L1" type: "ReLU" bottom: "Mconv4_stage2_L1" top: "Mconv4_stage2_L1" } layer { name: "Mconv4_stage2_L2" type: "Convolution" bottom: "Mconv3_stage2_L2" top: "Mconv4_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage2_L2" type: "ReLU" bottom: "Mconv4_stage2_L2" top: "Mconv4_stage2_L2" } layer { name: "Mconv5_stage2_L1" type: "Convolution" bottom: "Mconv4_stage2_L1" top: "Mconv5_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage2_L1" type: "ReLU" bottom: "Mconv5_stage2_L1" top: "Mconv5_stage2_L1" } layer { name: "Mconv5_stage2_L2" type: "Convolution" bottom: "Mconv4_stage2_L2" top: "Mconv5_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage2_L2" type: "ReLU" bottom: "Mconv5_stage2_L2" top: "Mconv5_stage2_L2" } layer { name: "Mconv6_stage2_L1" type: "Convolution" bottom: "Mconv5_stage2_L1" top: "Mconv6_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage2_L1" type: "ReLU" bottom: "Mconv6_stage2_L1" top: "Mconv6_stage2_L1" } layer { name: "Mconv6_stage2_L2" type: "Convolution" bottom: "Mconv5_stage2_L2" top: "Mconv6_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage2_L2" type: "ReLU" bottom: "Mconv6_stage2_L2" top: "Mconv6_stage2_L2" } layer { name: "Mconv7_stage2_L1" type: "Convolution" bottom: "Mconv6_stage2_L1" top: "Mconv7_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 38 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage2_L2" type: "Convolution" bottom: "Mconv6_stage2_L2" top: "Mconv7_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 19 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage3" type: "Concat" bottom: "Mconv7_stage2_L1" bottom: "Mconv7_stage2_L2" bottom: "conv4_4_CPM" top: "concat_stage3" concat_param { axis: 1 } } layer { name: "Mconv1_stage3_L1" type: "Convolution" bottom: "concat_stage3" top: "Mconv1_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage3_L1" type: "ReLU" bottom: "Mconv1_stage3_L1" top: "Mconv1_stage3_L1" } layer { name: "Mconv1_stage3_L2" type: "Convolution" bottom: "concat_stage3" top: "Mconv1_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage3_L2" type: "ReLU" bottom: "Mconv1_stage3_L2" top: "Mconv1_stage3_L2" } layer { name: "Mconv2_stage3_L1" type: "Convolution" bottom: "Mconv1_stage3_L1" top: "Mconv2_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage3_L1" type: "ReLU" bottom: "Mconv2_stage3_L1" top: "Mconv2_stage3_L1" } layer { name: "Mconv2_stage3_L2" type: "Convolution" bottom: "Mconv1_stage3_L2" top: "Mconv2_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage3_L2" type: "ReLU" bottom: "Mconv2_stage3_L2" top: "Mconv2_stage3_L2" } layer { name: "Mconv3_stage3_L1" type: "Convolution" bottom: "Mconv2_stage3_L1" top: "Mconv3_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage3_L1" type: "ReLU" bottom: "Mconv3_stage3_L1" top: "Mconv3_stage3_L1" } layer { name: "Mconv3_stage3_L2" type: "Convolution" bottom: "Mconv2_stage3_L2" top: "Mconv3_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage3_L2" type: "ReLU" bottom: "Mconv3_stage3_L2" top: "Mconv3_stage3_L2" } layer { name: "Mconv4_stage3_L1" type: "Convolution" bottom: "Mconv3_stage3_L1" top: "Mconv4_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage3_L1" type: "ReLU" bottom: "Mconv4_stage3_L1" top: "Mconv4_stage3_L1" } layer { name: "Mconv4_stage3_L2" type: "Convolution" bottom: "Mconv3_stage3_L2" top: "Mconv4_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage3_L2" type: "ReLU" bottom: "Mconv4_stage3_L2" top: "Mconv4_stage3_L2" } layer { name: "Mconv5_stage3_L1" type: "Convolution" bottom: "Mconv4_stage3_L1" top: "Mconv5_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage3_L1" type: "ReLU" bottom: "Mconv5_stage3_L1" top: "Mconv5_stage3_L1" } layer { name: "Mconv5_stage3_L2" type: "Convolution" bottom: "Mconv4_stage3_L2" top: "Mconv5_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage3_L2" type: "ReLU" bottom: "Mconv5_stage3_L2" top: "Mconv5_stage3_L2" } layer { name: "Mconv6_stage3_L1" type: "Convolution" bottom: "Mconv5_stage3_L1" top: "Mconv6_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage3_L1" type: "ReLU" bottom: "Mconv6_stage3_L1" top: "Mconv6_stage3_L1" } layer { name: "Mconv6_stage3_L2" type: "Convolution" bottom: "Mconv5_stage3_L2" top: "Mconv6_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage3_L2" type: "ReLU" bottom: "Mconv6_stage3_L2" top: "Mconv6_stage3_L2" } layer { name: "Mconv7_stage3_L1" type: "Convolution" bottom: "Mconv6_stage3_L1" top: "Mconv7_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 38 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage3_L2" type: "Convolution" bottom: "Mconv6_stage3_L2" top: "Mconv7_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 19 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage4" type: "Concat" bottom: "Mconv7_stage3_L1" bottom: "Mconv7_stage3_L2" bottom: "conv4_4_CPM" top: "concat_stage4" concat_param { axis: 1 } } layer { name: "Mconv1_stage4_L1" type: "Convolution" bottom: "concat_stage4" top: "Mconv1_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage4_L1" type: "ReLU" bottom: "Mconv1_stage4_L1" top: "Mconv1_stage4_L1" } layer { name: "Mconv1_stage4_L2" type: "Convolution" bottom: "concat_stage4" top: "Mconv1_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage4_L2" type: "ReLU" bottom: "Mconv1_stage4_L2" top: "Mconv1_stage4_L2" } layer { name: "Mconv2_stage4_L1" type: "Convolution" bottom: "Mconv1_stage4_L1" top: "Mconv2_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage4_L1" type: "ReLU" bottom: "Mconv2_stage4_L1" top: "Mconv2_stage4_L1" } layer { name: "Mconv2_stage4_L2" type: "Convolution" bottom: "Mconv1_stage4_L2" top: "Mconv2_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage4_L2" type: "ReLU" bottom: "Mconv2_stage4_L2" top: "Mconv2_stage4_L2" } layer { name: "Mconv3_stage4_L1" type: "Convolution" bottom: "Mconv2_stage4_L1" top: "Mconv3_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage4_L1" type: "ReLU" bottom: "Mconv3_stage4_L1" top: "Mconv3_stage4_L1" } layer { name: "Mconv3_stage4_L2" type: "Convolution" bottom: "Mconv2_stage4_L2" top: "Mconv3_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage4_L2" type: "ReLU" bottom: "Mconv3_stage4_L2" top: "Mconv3_stage4_L2" } layer { name: "Mconv4_stage4_L1" type: "Convolution" bottom: "Mconv3_stage4_L1" top: "Mconv4_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage4_L1" type: "ReLU" bottom: "Mconv4_stage4_L1" top: "Mconv4_stage4_L1" } layer { name: "Mconv4_stage4_L2" type: "Convolution" bottom: "Mconv3_stage4_L2" top: "Mconv4_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage4_L2" type: "ReLU" bottom: "Mconv4_stage4_L2" top: "Mconv4_stage4_L2" } layer { name: "Mconv5_stage4_L1" type: "Convolution" bottom: "Mconv4_stage4_L1" top: "Mconv5_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage4_L1" type: "ReLU" bottom: "Mconv5_stage4_L1" top: "Mconv5_stage4_L1" } layer { name: "Mconv5_stage4_L2" type: "Convolution" bottom: "Mconv4_stage4_L2" top: "Mconv5_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage4_L2" type: "ReLU" bottom: "Mconv5_stage4_L2" top: "Mconv5_stage4_L2" } layer { name: "Mconv6_stage4_L1" type: "Convolution" bottom: "Mconv5_stage4_L1" top: "Mconv6_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage4_L1" type: "ReLU" bottom: "Mconv6_stage4_L1" top: "Mconv6_stage4_L1" } layer { name: "Mconv6_stage4_L2" type: "Convolution" bottom: "Mconv5_stage4_L2" top: "Mconv6_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage4_L2" type: "ReLU" bottom: "Mconv6_stage4_L2" top: "Mconv6_stage4_L2" } layer { name: "Mconv7_stage4_L1" type: "Convolution" bottom: "Mconv6_stage4_L1" top: "Mconv7_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 38 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage4_L2" type: "Convolution" bottom: "Mconv6_stage4_L2" top: "Mconv7_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 19 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage5" type: "Concat" bottom: "Mconv7_stage4_L1" bottom: "Mconv7_stage4_L2" bottom: "conv4_4_CPM" top: "concat_stage5" concat_param { axis: 1 } } layer { name: "Mconv1_stage5_L1" type: "Convolution" bottom: "concat_stage5" top: "Mconv1_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage5_L1" type: "ReLU" bottom: "Mconv1_stage5_L1" top: "Mconv1_stage5_L1" } layer { name: "Mconv1_stage5_L2" type: "Convolution" bottom: "concat_stage5" top: "Mconv1_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage5_L2" type: "ReLU" bottom: "Mconv1_stage5_L2" top: "Mconv1_stage5_L2" } layer { name: "Mconv2_stage5_L1" type: "Convolution" bottom: "Mconv1_stage5_L1" top: "Mconv2_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage5_L1" type: "ReLU" bottom: "Mconv2_stage5_L1" top: "Mconv2_stage5_L1" } layer { name: "Mconv2_stage5_L2" type: "Convolution" bottom: "Mconv1_stage5_L2" top: "Mconv2_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage5_L2" type: "ReLU" bottom: "Mconv2_stage5_L2" top: "Mconv2_stage5_L2" } layer { name: "Mconv3_stage5_L1" type: "Convolution" bottom: "Mconv2_stage5_L1" top: "Mconv3_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage5_L1" type: "ReLU" bottom: "Mconv3_stage5_L1" top: "Mconv3_stage5_L1" } layer { name: "Mconv3_stage5_L2" type: "Convolution" bottom: "Mconv2_stage5_L2" top: "Mconv3_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage5_L2" type: "ReLU" bottom: "Mconv3_stage5_L2" top: "Mconv3_stage5_L2" } layer { name: "Mconv4_stage5_L1" type: "Convolution" bottom: "Mconv3_stage5_L1" top: "Mconv4_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage5_L1" type: "ReLU" bottom: "Mconv4_stage5_L1" top: "Mconv4_stage5_L1" } layer { name: "Mconv4_stage5_L2" type: "Convolution" bottom: "Mconv3_stage5_L2" top: "Mconv4_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage5_L2" type: "ReLU" bottom: "Mconv4_stage5_L2" top: "Mconv4_stage5_L2" } layer { name: "Mconv5_stage5_L1" type: "Convolution" bottom: "Mconv4_stage5_L1" top: "Mconv5_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage5_L1" type: "ReLU" bottom: "Mconv5_stage5_L1" top: "Mconv5_stage5_L1" } layer { name: "Mconv5_stage5_L2" type: "Convolution" bottom: "Mconv4_stage5_L2" top: "Mconv5_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage5_L2" type: "ReLU" bottom: "Mconv5_stage5_L2" top: "Mconv5_stage5_L2" } layer { name: "Mconv6_stage5_L1" type: "Convolution" bottom: "Mconv5_stage5_L1" top: "Mconv6_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage5_L1" type: "ReLU" bottom: "Mconv6_stage5_L1" top: "Mconv6_stage5_L1" } layer { name: "Mconv6_stage5_L2" type: "Convolution" bottom: "Mconv5_stage5_L2" top: "Mconv6_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage5_L2" type: "ReLU" bottom: "Mconv6_stage5_L2" top: "Mconv6_stage5_L2" } layer { name: "Mconv7_stage5_L1" type: "Convolution" bottom: "Mconv6_stage5_L1" top: "Mconv7_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 38 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage5_L2" type: "Convolution" bottom: "Mconv6_stage5_L2" top: "Mconv7_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 19 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage6" type: "Concat" bottom: "Mconv7_stage5_L1" bottom: "Mconv7_stage5_L2" bottom: "conv4_4_CPM" top: "concat_stage6" concat_param { axis: 1 } } layer { name: "Mconv1_stage6_L1" type: "Convolution" bottom: "concat_stage6" top: "Mconv1_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage6_L1" type: "ReLU" bottom: "Mconv1_stage6_L1" top: "Mconv1_stage6_L1" } layer { name: "Mconv1_stage6_L2" type: "Convolution" bottom: "concat_stage6" top: "Mconv1_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage6_L2" type: "ReLU" bottom: "Mconv1_stage6_L2" top: "Mconv1_stage6_L2" } layer { name: "Mconv2_stage6_L1" type: "Convolution" bottom: "Mconv1_stage6_L1" top: "Mconv2_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage6_L1" type: "ReLU" bottom: "Mconv2_stage6_L1" top: "Mconv2_stage6_L1" } layer { name: "Mconv2_stage6_L2" type: "Convolution" bottom: "Mconv1_stage6_L2" top: "Mconv2_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage6_L2" type: "ReLU" bottom: "Mconv2_stage6_L2" top: "Mconv2_stage6_L2" } layer { name: "Mconv3_stage6_L1" type: "Convolution" bottom: "Mconv2_stage6_L1" top: "Mconv3_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage6_L1" type: "ReLU" bottom: "Mconv3_stage6_L1" top: "Mconv3_stage6_L1" } layer { name: "Mconv3_stage6_L2" type: "Convolution" bottom: "Mconv2_stage6_L2" top: "Mconv3_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage6_L2" type: "ReLU" bottom: "Mconv3_stage6_L2" top: "Mconv3_stage6_L2" } layer { name: "Mconv4_stage6_L1" type: "Convolution" bottom: "Mconv3_stage6_L1" top: "Mconv4_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage6_L1" type: "ReLU" bottom: "Mconv4_stage6_L1" top: "Mconv4_stage6_L1" } layer { name: "Mconv4_stage6_L2" type: "Convolution" bottom: "Mconv3_stage6_L2" top: "Mconv4_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage6_L2" type: "ReLU" bottom: "Mconv4_stage6_L2" top: "Mconv4_stage6_L2" } layer { name: "Mconv5_stage6_L1" type: "Convolution" bottom: "Mconv4_stage6_L1" top: "Mconv5_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage6_L1" type: "ReLU" bottom: "Mconv5_stage6_L1" top: "Mconv5_stage6_L1" } layer { name: "Mconv5_stage6_L2" type: "Convolution" bottom: "Mconv4_stage6_L2" top: "Mconv5_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 3 kernel_size: 7 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage6_L2" type: "ReLU" bottom: "Mconv5_stage6_L2" top: "Mconv5_stage6_L2" } layer { name: "Mconv6_stage6_L1" type: "Convolution" bottom: "Mconv5_stage6_L1" top: "Mconv6_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage6_L1" type: "ReLU" bottom: "Mconv6_stage6_L1" top: "Mconv6_stage6_L1" } layer { name: "Mconv6_stage6_L2" type: "Convolution" bottom: "Mconv5_stage6_L2" top: "Mconv6_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage6_L2" type: "ReLU" bottom: "Mconv6_stage6_L2" top: "Mconv6_stage6_L2" } layer { name: "Mconv7_stage6_L1" type: "Convolution" bottom: "Mconv6_stage6_L1" top: "Mconv7_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 38 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage6_L2" type: "Convolution" bottom: "Mconv6_stage6_L2" top: "Mconv7_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 19 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage7" type: "Concat" bottom: "Mconv7_stage6_L2" bottom: "Mconv7_stage6_L1" # top: "concat_stage7" top: "net_output" concat_param { axis: 1 } }
下載模型權重
步驟一:
我們正在使用在Caffe深度學習框架上訓練的模型。Caffe模型具有2個文件–
- .prototxt文件,指定了神經網絡的體系結構–不同層的排列方式等。
- .caffemodel文件,用於存儲訓練后的模型的權重
我們將使用這兩個文件將網絡加載到內存中。
protoFile = "model/pose_deploy_linevec.prototxt" weightsFile = "model/pose_iter_440000.caffemodel"net
=
cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
步驟二:
讀取圖像並准備輸入網絡
我們使用OpenCV讀取的輸入幀應轉換為輸入Blob(例如Caffe),以便可以將其輸入到網絡。這是使用blobFromImage函數完成的,該函數將圖像從OpenCV格式轉換為Caffe blob格式。這些參數將在blobFromImage函數中提供。首先,我們將像素值標准化為(0,1)。然后,我們指定圖像的尺寸。接下來,要減去的平均值為(0,0,0)。由於OpenCV和Caffe都使用BGR格式,因此無需交換R和B通道。
net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile) # 讀取caffe模型 inWidth = 368 inHeight = 368 inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False) #將輸入圖片轉成相應模型識別的blob數據 net.setInput(inpBlob) # 放進網絡
步驟三:
進行預測並解析關鍵點
一旦將圖像傳遞到模型,就可以使用單行代碼進行預測。OpenCV中DNN類的正向方法通過網絡進行正向傳遞,這只是說它正在做出預測的另一種方式。
output = net.forward() # 向前傳播,進行預測
輸出為4D矩陣:
- 第一維是圖像ID(如果您將多個圖像傳遞到網絡)。
- 第二個維度指示關鍵點的索引。該模型將生成所有連接在一起的置信度圖和零件親和度圖。對於COCO模型,它由57個部分組成– 18個關鍵點置信度圖+ 1個背景+ 19 * 2個部分親和度圖。同樣,對於MPI,它會產生44點。我們將僅使用與關鍵點相對應的前幾個點。
- 第三維是輸出圖的高度。
- 第四個維度是輸出圖的寬度。
我們檢查圖像中是否存在每個關鍵點。我們通過找到關鍵點的置信度圖的最大值來獲得關鍵點的位置。我們還使用閾值來減少錯誤檢測。
H = out.shape[2] W = out.shape[3] # Empty list to store the detected keypoints points = [] for i in range(len()): # confidence map of corresponding body's part. probMap = output[0, i, :, :] # Find global maxima of the probMap. minVal, prob, minLoc, point = cv2.minMaxLoc(probMap) # Scale the point to fit on the original image x = (frameWidth * point[0]) / W y = (frameHeight * point[1]) / H if prob > threshold : cv2.circle(frame, (int(x), int(y)), 15, (0, 255, 255), thickness=-1, lineType=cv.FILLED) cv2.putText(frame, "{}".format(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, lineType=cv2.LINE_AA) # Add the point to the list if the probability is greater than the threshold points.append((int(x), int(y))) else : points.append(None) cv2.imshow("Output-Keypoints",frame) cv2.waitKey(0) cv2.destroyAllWindows()
由於我們事先知道了點的索引,因此只要有關鍵點,我們就可以通過僅加入對來繪制骨架。這是使用下面給出的代碼完成的。
for pair in POSE_PAIRS: partA = pair[0] partB = pair[1] if points[partA] and points[partB]: cv2.line(frameCopy, points[partA], points[partB], (0, 255, 0), 3)
完整代碼:
import cv2 import time import numpy as np MODE = "COCO" if MODE is "COCO": protoFile = "model/pose_deploy_linevec.prototxt" weightsFile = "model/pose_iter_440000.caffemodel" nPoints = 18 POSE_PAIRS = [[1, 0], [1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], [9, 10], [1, 11], [11, 12], [12, 13], [0, 14], [0, 15], [14, 16], [15, 17]] frame = cv2.imread("image.jpg") frameCopy = np.copy(frame) frameWidth = frame.shape[1] frameHeight = frame.shape[0] threshold = 0.1 net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile) # 讀取caffe模型 t = time.time() inWidth = 368 inHeight = 368 inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False) #將輸入圖片轉成相應模型識別的blob數據 net.setInput(inpBlob) # 放進網絡 output = net.forward() # 向前傳播,進行預測 print("time taken by network : {:.3f}".format(time.time() - t)) # print(output.shape, output) #輸出4D舉證: # 第一維是圖像ID(如果您將多個圖像傳遞到網絡)。 # 第二個維度指示關鍵點的索引。該模型將生成所有連接在一起的置信度圖和零件親和度圖。對於COCO模型,它由57個部分組成– 18個關鍵點置信度圖+ 1個背景+ 19 * 2個部分親和度圖。同樣,對於MPI,它會產生44點。我們將僅使用與關鍵點相對應的前幾個點。 # 第三維是輸出圖的高度。 # 第四個維度是輸出圖的寬度。 H = output.shape[2] # 輸出的圖像的高度 W = output.shape[3] # 輸出圖像的寬度 # Empty list to store the detected keypoints points = [] for i in range(nPoints): # confidence map of corresponding body's part. probMap = output[0, i, :, :] # 獲取關鍵點 # Find global maxima of the probMap. minVal, prob, minLoc, point = cv2.minMaxLoc(probMap) # 通過minMaxLoc得出該矩陣中的最小值、最大值、最小值索引,最大值索引 print(minVal, prob, minLoc, point) # Scale the point to fit on the original image將輸出圖像中的關鍵點映射到原始圖片上 x = (frameWidth / W) * point[0] y = (frameHeight / H) * point[1] if prob > threshold: cv2.circle(frameCopy, (int(x), int(y)), 4, (0, 255, 255), thickness=-1, lineType=cv2.FILLED) cv2.putText(frameCopy, "{}".format(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), lineType=cv2.LINE_AA) # Add the point to the list if the probability is greater than the threshold points.append((int(x), int(y))) else: points.append(None) # Draw Skeleton for pair in POSE_PAIRS: partA = pair[0] partB = pair[1] if points[partA] and points[partB]: cv2.line(frame, points[partA], points[partB], (0, 255, 255), 2) cv2.circle(frame, points[partA], 8, (0, 0, 255), thickness=-1, lineType=cv2.FILLED) cv2.imshow('Output-Keypoints', frameCopy) cv2.imshow('Output-Skeleton', frame) print("Total time taken : {:.3f}".format(time.time() - t)) cv2.waitKey(0)