C# 分布式自增ID算法snowflake(雪花算法)


概述

分布式系統中,有一些需要使用全局唯一ID的場景,這種時候為了防止ID沖突可以使用36位的UUID,但是UUID有一些缺點,首先他相對比較長,另外UUID一般是無序的。有些時候我們希望能使用一種簡單一些的ID,並且希望ID能夠按照時間有序生成。而twitter的snowflake解決了這種需求,最初Twitter把存儲系統從MySQL遷移到Cassandra,因為Cassandra沒有順序ID生成機制,所以開發了這樣一套全局唯一ID生成服務。 該項目地址為:https://github.com/twitter/snowflake是用Scala實現的。 

結構

snowflake的結構如下(每部分用-分開):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

第一位為未使用,接下來的41位為毫秒級時間(41位的長度可以使用69年),然后是5位datacenterId和5位workerId(10位的長度最多支持部署1024個節點) ,最后12位是毫秒內的計數(12位的計數順序號支持每個節點每毫秒產生4096個ID序號)

一共加起來剛好64位,為一個Long型。(轉換成字符串長度為18)

snowflake生成的ID整體上按照時間自增排序,並且整個分布式系統內不會產生ID碰撞(由datacenter和workerId作區分),並且效率較高。據說:snowflake每秒能夠產生26萬個ID。

C#代碼

public class IdWorker
{
    //機器ID
    private static long workerId;
    private static long twepoch = 687888001020L; //唯一時間,這是一個避免重復的隨機量,自行設定不要大於當前時間戳
    private static long sequence = 0L;
    private static int workerIdBits = 4; //機器碼字節數。4個字節用來保存機器碼(定義為Long類型會出現,最大偏移64位,所以左移64位沒有意義)
    public static long maxWorkerId = -1L ^ -1L << workerIdBits; //最大機器ID
    private static int sequenceBits = 10; //計數器字節數,10個字節用來保存計數碼
    private static int workerIdShift = sequenceBits; //機器碼數據左移位數,就是后面計數器占用的位數
    private static int timestampLeftShift = sequenceBits + workerIdBits; //時間戳左移動位數就是機器碼和計數器總字節數
    public static long sequenceMask = -1L ^ -1L << sequenceBits; //一微秒內可以產生計數,如果達到該值則等到下一微妙在進行生成
    private long lastTimestamp = -1L;

    /// <summary>
    /// 機器碼
    /// </summary>
    /// <param name="workerId"></param>
    public IdWorker(long workerId)
    {
        if (workerId > maxWorkerId || workerId < 0)
            throw new Exception(string.Format("worker Id can't be greater than {0} or less than 0 ", workerId));
        IdWorker.workerId = workerId;
    }

    public long nextId()
    {
        lock (this)
        {
            long timestamp = timeGen();
            if (this.lastTimestamp == timestamp)
            { //同一微妙中生成ID
                IdWorker.sequence = (IdWorker.sequence + 1) & IdWorker.sequenceMask; //用&運算計算該微秒內產生的計數是否已經到達上限
                if (IdWorker.sequence == 0)
                {
                    //一微妙內產生的ID計數已達上限,等待下一微妙
                    timestamp = tillNextMillis(this.lastTimestamp);
                }
            }
            else
            { //不同微秒生成ID
                IdWorker.sequence = 0; //計數清0
            }
            if (timestamp < lastTimestamp)
            { //如果當前時間戳比上一次生成ID時時間戳還小,拋出異常,因為不能保證現在生成的ID之前沒有生成過
                throw new Exception(string.Format("Clock moved backwards.  Refusing to generate id for {0} milliseconds",
                    this.lastTimestamp - timestamp));
            }
            this.lastTimestamp = timestamp; //把當前時間戳保存為最后生成ID的時間戳
            long nextId = (timestamp - twepoch << timestampLeftShift) | IdWorker.workerId << IdWorker.workerIdShift | IdWorker.sequence;
            return nextId;
        }
    }

    /// <summary>
    /// 獲取下一微秒時間戳
    /// </summary>
    /// <param name="lastTimestamp"></param>
    /// <returns></returns>
    private long tillNextMillis(long lastTimestamp)
    {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp)
        {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /// <summary>
    /// 生成當前時間戳
    /// </summary>
    /// <returns></returns>
    private long timeGen()
    {
        return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
    }
}

 

調用方法:

IdWorker idworker = new IdWorker(1);
for (int i = 0; i < 1000; i++)
{
  Console.WriteLine(idworker.nextId());
}

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM