Mxnet基礎知識(一)


 1. 基本數據結構

  和pytorch等中的tensor類似,mxnet中的ndarray或者nd,用來操作矩陣或者張量數據。基本操作類似於Numpy, 支持計算,索引等。

      創建矩陣

from mxnet import nd   #或者 from mxnet import ndarray as nd

#創建矩陣
x1 = nd.array([[1, 2,], [3, 4]])
x2 = nd.random.uniform(1, 10, shape=(3, 3))   #3*3的矩陣
x3 = nd.random.randn(2,3)  #2*3 的矩陣
x4 = nd.random.randint(1, 10, shape=(2, 3)) #2*3 的矩陣
x5 = nd.ones(shape=(2, 2))  #2*2 的矩陣
x6 = nd.full(shape=(2, 3), val=2)  #2*3 的矩陣, 值為2
print(x1.shape, x1.size, x1.dtype)  #(2, 2)   4   <class 'numpy.float32'>

  操作矩陣

x = nd.random.randn(2, 3)
y = nd.random.randn(2, 3)
print(y.exp())  # 2*3 的矩陣
print(x*y)  # 2*3 的矩陣
print(nd.dot(x, y.T))  # 2*2 的矩陣

#和numpy相互轉換
a = y.asnumpy()
print(a)
a = nd.array(np.ones((2, 3)))
print(a)

 

  矩陣索引

y = nd.random.randint(1, 10, shape=(3, 3))
print(y[1, 2]) # [5]
print(y[:, 1:3]) # 3*2
y[:,1:3] = 2   #賦值
y[1:2,0:2] = 4  #賦值
print(y)

 

2. 創建神經網絡

  mxnet中gluon包中包含神經網絡創建中的相關操作,和pytorch類似,可以繼承block來創建神經網絡,只需定義網絡結構和實現前向傳播函數。

  方式一: 繼承nn.Block

class MyNet(nn.Block):
    def __init__(self):
        super(MyNet, self).__init__()
        self.features = nn.Sequential()
        self.features.add(
            nn.Conv2D(channels=16, kernel_size=5, strides=(1, 1),
                      padding=(0, 0), activation="relu"),  #和pytorch不同之處:不需要設置輸入通道數,可以設置激活函數
            nn.MaxPool2D(pool_size=(2, 2), stides=2, padding=0),
            nn.Conv2D(channels=32, kernel_size=3, strides=(1, 1),
                      padding=(0, 0), activation="relu"),
            nn.MaxPool2D(pool_size=(2, 2), stides=2, padding=0),

        )

        self.fc = nn.Sequential()
        self.fc.add(
            nn.Dense(units=120, activation="relu"),  #和pytorch不同之處:不需要設置輸入向量的大小,可以設置激活函數
            nn.Dense(units=84, activation="relu"),
            nn.Dense(units=10)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.fc(x)
        return x
net = MyNet()
net.initialize() # 網絡內部的參數必須先進行初始化 (pytorch中需要逐層進行初始化)
x = nd.random.uniform(shape=(1, 3, 300, 300))
print(net(x))

   方式二:直接利用nn.Sequential

net = nn.Sequential()
net.add(
    nn.Conv2D(channels=16, kernel_size=5, strides=(1, 1),
              padding=(0, 0), activation="relu"),  # 和pytorch不同之處:不需要設置輸入通道數,可以設置激活函數
    nn.MaxPool2D(pool_size=(2, 2), strides=2, padding=0),
    nn.Conv2D(channels=32, kernel_size=3, strides=(1, 1),
              padding=(0, 0), activation="relu"),
    nn.MaxPool2D(pool_size=(2, 2), strides=2, padding=0),
    nn.Dense(units=120, activation="relu"),  # 和pytorch不同之處:不需要設置輸入向量的大小,可以設置激活函數
    nn.Dense(units=84, activation="relu"),
    nn.Dense(units=10)
)

net.initialize()   # 網絡內部的參數必須先進行初始化 (pytorch中需要逐層進行初始化)
x = nd.random.uniform(shape=(1, 3, 300, 300))
print(net(x))

3. 神經網絡訓練

  梯度反向傳播,mxnet會自動求導,需要利用mxnet的autograd,如下:

from mxnet import nd
from mxnet import autograd

x = nd.array([[1, 2], [3, 4]])
x.attach_grad()  #1. 聲明存儲導數的地方
with autograd.record():   #2. 該上下文中的過程,反向傳播時會自動求導
    y = 2*x*x
y.backward()          #3. 反向傳播; 會自動求和再計算導數,相當於y.sum().backward()
print(x.grad)          #4. 取導數值

   3.1. 加載數據

  自己加載數據,主要需要繼承mxnet.gluon.data.Dataset,然后傳遞給mxnet.gluon.data.DataLoader。有幾個坑:

  A.  Dataset返回img和label, label不能為字符串格式

  B. Dataloader中的num_workers設置大於0時, 對於windows系統,由於采用多進程,需要寫在__main__中;若還是報錯時,num_workers改為0

#coding:utf-8
import mxnet as mx
from mxnet import gluon
from mxnet.gluon.data import Dataset, DataLoader
from mxnet.gluon.data.vision import transforms
import os
import cv2


#1.繼承mxnet.gluon.data.Dataset, 實現__len__和__getitem__(返回每張圖片和標注)
class MyDataset(Dataset):
    def __init__(self, img_root, anno_file):
        assert os.path.exists(anno_file), print("Annotation file {} not exist".format(anno_file))
        self.img_root = img_root
        self.anno_file = anno_file
        with open(anno_file, "r", encoding="utf-8") as f:
            lines = f.readlines()
        self.items = [line.strip().split() for line in lines if line.strip()]

    def __len__(self):
        return len(self.items)

    def __getitem__(self, x):
        img_name, label = self.items[x]
        img_path = os.path.join(self.img_root, img_name)
        assert os.path.exists(img_path), print("img_file {} does not exist".format(img_path))
        img = mx.image.imread(img_path)

        return img, label   #注意此處label為字符串會報錯

if __name__ == "__main__":
    #2. 將dataset傳入mxnet.gluon.data.Dataloader
    img_root = r"D:\data\synthtext"
    anno_file = r"D:\data\synthtext\labels.txt"
    dataset = MyDataset(img_root, anno_file)
    transformer = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
    ])  # dataset.transform_first(transformer), 對圖片進行增強(即對__getitem__返回的第一項進行處理)
    train_data = DataLoader(dataset.transform_first(transformer), batch_size=2, shuffle=True, num_workers=0)
    print(train_data)
    for img, label in train_data:
        print(label)
        print(img.shape)

  3.2 定義網絡

  見文章上面第二點

 

  3.3 定義損失函數  

  gluon.loss包含了部分常用的Loss,如下:

   loss = gluon.loss.SoftmaxCrossEntropyLoss()   #交叉熵損失函數
    loss = gluon.loss.L2Loss()                  #均方差損失函數
    loss = gluon.loss.CTCLoss()                 # CTC損失函數
    loss = gluon.loss.L1Loss()                  # L1 損失函數
    #位找到smoothL1,發現兩個相關的 mx.nd.smooth_l1(); mx.metric.Loss("SmoothL1")


_all__ = ['Loss', 'L2Loss', 'L1Loss',
'SigmoidBinaryCrossEntropyLoss', 'SigmoidBCELoss',
'SoftmaxCrossEntropyLoss', 'SoftmaxCELoss',
'KLDivLoss', 'CTCLoss', 'HuberLoss', 'HingeLoss',
'SquaredHingeLoss', 'LogisticLoss', 'TripletLoss', 'PoissonNLLLoss', 'CosineEmbeddingLoss']

 

  3.4 定義優化器

   優化器定義在gluon.Trainer() ,第一個參數params為網絡參數,第二個參數optimizer為優化器的名字,第三個參數optimizer_params為傳給優化器的參數

   支持的optimizer如下:

 __all__ = [
        'AdaDelta', 'AdaGrad', 'Adam', 'Adamax', 'DCASGD', 'FTML', 'Ftrl', 'LBSGD',
        'NAG', 'NDabs', 'Nadam', 'Optimizer', 'RMSProp', 'SGD', 'SGLD', 'Signum',
        'Test', 'ccSGD', 
    ]

  共同支持的optimizer_params如下: (不同優化器還有其特定的參數)

Parameters
rescale_grad (float, optional, default 1.0) – Multiply the gradient with rescale_grad before updating. Often choose to be 1.0/batch_size.

param_idx2name (dict from int to string, optional, default None) – A dictionary that maps int index to string name.

clip_gradient (float, optional, default None) – Clip the gradient by projecting onto the box [-clip_gradient, clip_gradient].

learning_rate (float) – The initial learning rate. If None, the optimization will use the learning rate from lr_scheduler. If not None, it will overwrite the learning rate in lr_scheduler. If None and lr_scheduler is also None, then it will be set to 0.01 by default.

lr_scheduler (LRScheduler, optional, default None) – The learning rate scheduler.

wd (float, optional, default 0.0) – The weight decay (or L2 regularization) coefficient. Modifies objective by adding a penalty for having large weights.

sym (Symbol, optional, default None) – The Symbol this optimizer is applying to.

begin_num_update (int, optional, default 0) – The initial number of updates.

multi_precision (bool, optional, default False) – Flag to control the internal precision of the optimizer. False: results in using the same precision as the weights (default), True: makes internal 32-bit copy of the weights and applies gradients in 32-bit precision even if actual weights used in the model have lower precision. Turning this on can improve convergence and accuracy when training with float16.

param_dict (dict of int -> gluon.Parameter, default None) – Dictionary of parameter index to gluon.Parameter, used to lookup parameter attributes such as lr_mult, wd_mult, etc. param_dict shall not be deep copied.

aggregate_num (int, optional, default None) – Number of weights to be aggregated in a list. They are passed to the optimizer for a single optimization step. In default, only one weight is aggregated. When aggregate_num is set to numpy.inf, all the weights are aggregated.

use_fused_step (bool, optional, default None) – Whether or not to use fused kernels for optimizer. When use_fused_step=False, step is called, otherwise, fused_step is called.

Properties –

---------- –

learning_rate – The current learning rate of the optimizer. Given an Optimizer object optimizer, its learning rate can be accessed as optimizer.learning_rate.
optimizer_params

  常用優化器使用如下:

#優化器
    #1.動量法
    gluon.Trainer(params=net.collect_params(), optimizer="SGD",
                  optimizer_params={"learning_rate":0.001, "wd":0.00005, "momentum":0.9})
    #2. 自適應
    #AdaGrad
    gluon.Trainer(params=net.collect_params(), optimizer="AdaGrad",
                  optimizer_params={"learning_rate":0.001, "wd":0.00005,})
    #RMSProp
    gluon.Trainer(params=net.collect_params(), optimizer="RMSProp",
                  optimizer_params={"learning_rate": 0.001, "wd": 0.00005, "momentum":0.9})
    #Adam
    gluon.Trainer(params=net.collect_params(), optimizer="RMSProp",
                  optimizer_params={"learning_rate": 0.001, "wd": 0.00005})

  3.5 模型訓練

    for epoch in range(10):
        train_loss, train_acc, valid_acc = 0., 0., 0.
        tic = time.time()
        for data, label in train_data:
            # forward + backward
            with autograd.record():
                output = net(data)
                loss = softmax_cross_entropy(output, label)
            loss.backward()
            # update parameters
            trainer.step(batch_size)
            # calculate training metrics
            train_loss += loss.mean().asscalar()
            train_acc += acc(output, label)
        # calculate validation accuracy
        for data, label in valid_data:
            valid_acc += acc(net(data), label)
        print("Epoch %d: loss %.3f, train acc %.3f, test acc %.3f, in %.1f sec" % (
            epoch, train_loss / len(train_data), train_acc / len(train_data),
            valid_acc / len(valid_data), time.time() - tic))

 

4. 網絡參數保存和加載  

  Block 只能保存網絡參數,如下:

  net = nn.Sequential()
  net.add(
nn.Conv2D(channels=16, kernel_size=5, strides=(1, 1),
padding=(0, 0), activation="relu"), # 和pytorch不同之處:不需要設置輸入通道數,可以設置激活函數
nn.MaxPool2D(pool_size=(2, 2), strides=2, padding=0),
nn.Conv2D(channels=32, kernel_size=3, strides=(1, 1),
padding=(0, 0), activation="relu"),
nn.MaxPool2D(pool_size=(2, 2), strides=2, padding=0),
nn.Dense(units=120, activation="relu"), # 和pytorch不同之處:不需要設置輸入向量的大小,可以設置激活函數
nn.Dense(units=84, activation="relu"),
nn.Dense(units=10)
)
  #1 保存網絡權重參數
    net.save_parameters("checkpoint.params")
  #2 加載權重參數
    net.load_parameters("checkpoint.params", ctx=None, allow_missing=False,
                        ignore_extra=False, cast_dtype=False, dtype_source='current')
        ctx: 默認為Cpu
        allow_missing: True時表示:網絡結構中存在, 參數文件中不存在參數,不加載
        ignore_extra:   True時表示: 參數文件中存在,網絡結構中不存在的參數,不加載

  

  HybridBlock可以向Block一樣保存網絡參數,也可以同時保存網絡結構和網絡參數, 如下:

    net = nn.HybridSequential()
    net.add(
        nn.Conv2D(channels=16, kernel_size=5, strides=(1, 1),
                  padding=(0, 0), activation="relu"),  # 和pytorch不同之處:不需要設置輸入通道數,可以設置激活函數
        nn.MaxPool2D(pool_size=(2, 2), strides=2, padding=0),
        nn.Conv2D(channels=32, kernel_size=3, strides=(1, 1),
                  padding=(0, 0), activation="relu"),
        nn.MaxPool2D(pool_size=(2, 2), strides=2, padding=0),
        nn.Dense(units=120, activation="relu"),  # 和pytorch不同之處:不需要設置輸入向量的大小,可以設置激活函數
        nn.Dense(units=84, activation="relu"),
        nn.Dense(units=10)
    )
    # 1.對於HybridBlock, 可以同時保存網絡結構和權重參數
    #首先要進行hybridize()和一次前向傳播,才能進行export
    net.initialize()
    net.hybridize()
    x = mx.nd.zeros((1, 3, 100, 100))
    print(net(x))
    net.export(path="./checkpoint", epoch=1) #同時生成checkpoint-0001.params 和 checkpoint-symbol.json
    # # net.save_parameters("./checkpoint.params")

  #2. 加載export的網絡結構(json)和權重參數(params)
  #或者mx.SymbolBlock.imports()
  net = gluon.SymbolBlock.imports(symbol_file="./checkpoint-symbol.json",
input_names=["data"],
param_file="./checkpoint-0100.params",
ctx=mx.cpu())
  net.hybridize()
  x = mx.nd.zeros((1, 3, 100, 100))
  print(net(x))
  # net = mx.mod.Module.load(prefix="./checkpoint", epoch=100)

 

5. 使用GPU

  在進行訓練和計算時網絡參數和數據必須在同一環境下,同在CPU或同在GPU,采用GPU計算矩陣時能加速運算;可以在GPU上操作數據和網絡,如下:

  數據:可以在GPU上創建數據,也可以在CPU上創建數據,載移動到GPU

#1. 在GPU上創建數據,或者將數據從cpu移動到GPU
    #GPU創建
    x = mx.nd.zeros((1, 3, 100, 100), ctx=mx.gpu(0))
    print(x)
    #cpu創建,復制一份到GPU
    x = mx.nd.zeros((1, 3, 100, 100))
    x = x.copyto(mx.gpu(0))
    print(x)
    # cpu創建,復制一份移動到GPU
    x = mx.nd.zeros((1, 3, 100, 100))
    x = x.as_in_context(mx.gpu(0))
    print(x)

  網絡:可以在GPU上加載網絡參數,或者在CPU上加載,隨后移動到GPU

#2.在GPU上加載網絡參數,或者將網絡參數移動到GPU
    net = nn.Sequential()
    net.add(
        nn.Conv2D(channels=16, kernel_size=3, strides=1, padding=1),
        nn.Dense(18)
    )
    #GPU上初始化參數
    net.initialize(init=mx.init.Xavier(), ctx=mx.gpu(0))
    net.load_parameters("./checkpoint.params", ctx=mx.gpu(0))

    # #CPU上初始化參數,移動到GPU
    net.initialize(init=mx.init.Xavier())
    net.collect_params().reset_ctx(mx.gpu())

 

https://github.com/apache/incubator-mxnet

https://zhuanlan.zhihu.com/p/39420301

http://mxnet.incubator.apache.org/

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM