python分析Mysql慢查詢。通過Python調用開源分析工具pt-query-digest生成json結果,Python腳本解析json生成html報告。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/10/12 下午3:00
# @Author : Kionf
# @Site : https://kionf.com
# @Software: Sublime
import subprocess
import json
import os
import re
import sys
import time
from jinja2 import Environment, FileSystemLoader
# reload(sys)
# sys.setdefaultencoding('utf-8')
LibToolkit = 'pt-query-digest'
LibToolkit_url = 'https://github.com/kalivim/Mysql-SlowLog-analysis/raw/master/pt-query-digest'
HtmlTemplate = 'template.html'
HtmlTemplate_url = 'https://github.com/kalivim/Mysql-SlowLog-analysis/raw/master/template.html'
#檢測極賴
os.system('rpm -q perl-Digest-MD5 || yum -y -q install perl-Digest-MD5')
class RunAndCheckCommand:
def __init__(self, commands, task_name, ret_code=0):
self.commands = commands
self.task_name = task_name
self.ret_code = ret_code
def check_command_status_code(self):
"""
檢測任務
"""
if self.exp_code == self.ret_code:
print("\033[92m [INFO]>> %s \033[0m" % self.task_name)
else:
print("\033[91m [ERROR]>> %s \033[0m" % self.task_name)
exit(1)
def exec_command_stdout_res(self):
"""
執行命令實時返回命令輸出
:return:
"""
command_res = subprocess.Popen(self.commands, shell=True)
while command_res.poll():
line = command_res.stdout.readline()
line.strip()
if line:
print(line)
command_res.wait()
self.exp_code = command_res.returncode
self.check_command_status_code()
class AnalysisMysqlSlowLog:
"""
分析Mysql慢查詢日志輸出報告。
調用第三方工具包percona-toolkit中pt-query-digest工具,默認輸出slow.json文件Perl語言編寫
"""
def __init__(self, slow_log_file, json_file, report_file):
"""
:param slow_log_file: 需要分析的慢查詢日志文件
:param report_file: 生成報告文件名
"""
self.LibToolkit = LibToolkit
self.json_file = json_file
self.report_file = report_file
self.slow_log_file = slow_log_file
self.query_digest = "perl %s %s --output json --progress time,1 > %s" % (
self.LibToolkit, slow_log_file, self.json_file)
def check_argv_options(self):
get_toolkit = os.path.isfile(HtmlTemplate)
get_template = os.path.isfile(LibToolkit)
get_slow_log = os.path.isfile(self.slow_log_file)
if not get_toolkit:
res = RunAndCheckCommand('wget %s 2>/dev/null' % LibToolkit_url, '下載pt-query-digest工具')
res.exec_command_stdout_res()
if not get_template:
res = RunAndCheckCommand('wget %s 2>/dev/null' % HtmlTemplate_url, '下載報告HTML模板')
res.exec_command_stdout_res()
if not get_slow_log:
print("\033[91m [ERROR]>> 指定 %s 慢查詢日志不存在 \033[0m" % self.slow_log_file)
exit(1)
def general_html_report(self, sql_info):
env = Environment(loader=FileSystemLoader(os.path.dirname(__file__)))
template = env.get_template(HtmlTemplate)
html_content = template.render(sql_info=sql_info)
with open(self.report_file, 'wa') as f:
f.write(html_content.encode('utf-8'))
def general_json_slow_log_report(self):
"""
調用第三方工具pt-query-digest生成json報告,並獲取需要信息
:return: digest slow_log format to json
"""
self.check_argv_options()
RunCommandsOBJ = RunAndCheckCommand(self.query_digest, '生成Json報告')
RunCommandsOBJ.exec_command_stdout_res()
f = open(self.json_file, 'ra')
format_dict_all_data = json.load(f)
have_slow_query_tables = []
all_sql_info = []
all_slow_query_sql_info = format_dict_all_data['classes']
global_sql_info = format_dict_all_data['global']
for slow_query_sql in all_slow_query_sql_info:
query_metrics = slow_query_sql['metrics']
query_time = query_metrics['Query_time']
query_tables = slow_query_sql['tables']
for show_tables_sql in query_tables:
get_table_name = show_tables_sql['create'].split('.')[1]
table_name = re.match(r'`(\w*)`\\G', get_table_name).group(1)
if table_name not in have_slow_query_tables:
have_slow_query_tables.append(table_name)
sql_info = {
'ID': slow_query_sql['checksum'],
'query_time_max': query_time['max'],
'query_time_min': query_time['min'],
'query_time_95': query_time['pct_95'],
'query_time_median': query_time['median'],
'query_row_send_95': query_metrics['Rows_sent']['pct_95'],
'query_db': query_metrics['db']['value'],
'slow_query_count': slow_query_sql['query_count'],
'slow_query_tables': have_slow_query_tables,
'sql': slow_query_sql['example']['query'],
}
all_sql_info.append(sql_info)
all_sql_info = sorted(all_sql_info, key=lambda e: float(e['query_time_95']), reverse=True)
return all_sql_info
class SendReportForEmail:
pass
def help_msg():
"""
輸出幫助信息
"""
msg = """
Usage:
./ slow-query-analysis.py 慢查詢日志 生成json報告文件名 生成html報告文件名
"""
print(msg)
if __name__ == "__main__":
if len(sys.argv) == 4:
slow_log_name = sys.argv[1]
json_file_name = sys.argv[2]
report_name = sys.argv[3]
print('\033[92m ====開始分析慢查詢日志==== \033[0m')
obj = AnalysisMysqlSlowLog(slow_log_file=slow_log_name, json_file=json_file_name, report_file=report_name)
res_json_report = obj.general_json_slow_log_report()
obj.general_html_report(res_json_report)
else:
help_msg()
0x01 腳本使用方法
wget https://raw.githubusercontent.com/kalivim/Mysql-SlowLog-analysis/master/analysis-slow-log.py
chmod +x analysis-slow-log.py
./analysis-slow-log.py Mysql_SlowLog_file general_json_filename report_name
參數介紹
Mysql_SlowLog_file mysql慢查詢日志的文件名
general_json_filename 腳本生成的json報告文件名
report_name 生成的Html報告名
生成結果:
0x02 pt-query-digest工具介紹
pt-query-digest為percona工具包中的一個perl腳本,用來分析Mysql慢查詢日志,或者tcpdump的Mysql的數據包。生成結果有三種格式可以選擇:json,report, Mysql
常用語句:
- 將結果和歷史分析記錄寫入Mysql數據庫(會自動創建表,需指定寫入數據庫)
1
./pt-query-digest --progress time,1 --review h=172.16.8.185,D=kionf_dev,t=query_review,u=root,p=passwd --history h=172.16.8.185,D=kionf_dev,t=query_history,u=root,p=passwd mysql-M-slow.log
- 生成json報告
./pt-query-digest --progress time,1 --output json mysql-slow.log
- 生成report
./pt-query-digest mysql-slow.log
選項介紹:
--progess time,1 顯示慢查詢分析進度,每1s刷新一次
--review 將分析結果保存到表中,這個分析只是對查詢條件進行參數化,一個類型的查詢一條記錄,比較簡單。
下次使用--review時,存在相同的語句分析,不會記錄。
--history 將分析結果保存到表中,分析結果比較詳細,
下次再使用--history時,如果存在相同的語句,且查詢所在的時間區間和歷史表中的不同,則會記錄到數據表中
--output 分析結果輸出類型。 json report json-anon

