- 但是圖像是一個個像素點組成的,我們就可以通過不同圖像之間這些差異性就判斷兩個圖的相似度了。其中顏色特征是最常用的,(其余常用的特征還有紋理特征、形狀特征和空間關系特征等)
其中又分為
直方圖
顏色集
顏色矩
聚合向量
相關圖
1、直方圖
在Python中利用opencv中的calcHist()方法獲取其直方圖數據,返回的結果是一個列表,使用matplotlib,畫出了這兩張圖的直方圖數據圖
import cv2
import numpy
from matplotlib import pyplot
if __name__ == '__main__':
imgobj1 = cv2.imread('pho.jpg')
imgobj2 = cv2.imread('ph1.jpg')
hist1 = cv2.calcHist([imgobj1], [0], None, [256], [0.0, 255.0])
hist2 = cv2.calcHist([imgobj2], [0], None, [256], [0.0, 255.0])
pyplot.plot(range(256), hist1, 'r')
pyplot.plot(range(256), hist2, 'b')
pyplot.show()
cv2.imshow('img1',imgobj1)
cv2.imshow('img2',imgobj2)
cv2.waitKey(0)

(一):單通道圖,
俗稱灰度圖,每個像素點只能有有一個值表示顏色,它的像素值在0到255之間,0是黑色,255是白色,中間值是一些不同等級的灰色。(也有3通道的灰度圖,3通道灰度圖只有一個通道有值,其他兩個通道的值都是零)。
(二):三通道圖,每個像素點都有3個值表示 ,所以就是3通道。也有4通道的圖。例如RGB圖片即為三通道圖片,RGB色彩模式是工業界的一種顏色標准,是通過對紅(R)、綠(G)、藍(B)三個顏色通道的變化以及它們相互之間的疊加來得到各式各樣的顏色的,RGB即是代表紅、綠、藍三個通道的顏色,這個標准幾乎包括了人類視力所能感知的所有顏色,是目前運用最廣的顏色系統之一。總之,每一個點由三個值表示。
- 直方圖判斷相似度,如上圖,就算重合度即可
-
圖像指紋:
和人的指紋一樣,是身份的象征,而圖像指紋簡單點來講,就是將圖像按照一定的哈希算法,經過運算后得出的一組二進制數字。 -
漢明距離:
假如一組二進制數據為101,另外一組為111,那么顯然把第一組的第二位數據0改成1就可以變成第二組數據111,所以兩組數據的漢明距離就為1
簡單點說,漢明距離就是一組二進制數據變成另一組數據所需的步驟數,顯然,這個數值可以衡量兩張圖片的差異,漢明距離越小,則代表相似度越高。漢明距離為0,即代表兩張圖片完全一樣。
此算法是基於比較灰度圖每個像素與平均值來實現的
一般步驟:
- 縮放圖片,一般大小為8*8,64個像素值。
- 轉化為灰度圖
- 計算平均值:計算進行灰度處理后圖片的所有像素點的平均值,直接用numpy中的mean()計算即可。
- 比較像素灰度值:遍歷灰度圖片每一個像素,如果大於平均值記錄為1,否則為0.
- 得到信息指紋:組合64個bit位,順序隨意保持一致性。
- 最后比對兩張圖片的指紋,獲得漢明距離即可。
import cv2
import numpy as np
img1 = cv2.imread("/absPath.png")
img2 = cv2.imread("./x.png")
#調整到8*8
img1 = cv2.resize(img1,(8,8))
img2 = cv2.resize(img2,(8,8))
#轉化為灰度圖
gray1 = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
#獲取哈希
hash1 = getHash(gray1)
hash2 = getHash(gray2)
ret = Hamming_distance(hash1,hash2)
# 輸入灰度圖,返回hash
def getHash(image):
avreage = np.mean(image) #計算像素平均值
hash = []
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if image[i, j] > avreage:
hash.append(1)
else:
hash.append(0)
return hash
# 計算漢明距離
def Hamming_distance(hash1, hash2):
num = 0
for index in range(len(hash1)):
if hash1[index] != hash2[index]:
num += 1
return num
一般步驟:
縮小圖片:32 * 32是一個較好的大小,這樣方便DCT計算
轉化為灰度圖
計算DCT:利用Opencv中提供的dct()方法,注意輸入的圖像必須是32位浮點型,所以先利用numpy中的float32進行轉換
縮小DCT:DCT計算后的矩陣是32 * 32,保留左上角的8 * 8,這些代表的圖片的最低頻率
計算平均值:計算縮小DCT后的所有像素點的平均值。
進一步減小DCT:大於平均值記錄為1,反之記錄為0.
得到信息指紋:組合64個信息位,順序隨意保持一致性。
最后比對兩張圖片的指紋,獲得漢明距離即可。
dHash算法
相比pHash,dHash的速度要快的多,相比aHash,dHash在效率幾乎相同的情況下的效果要更好,它是基於漸變實現的。
步驟:
縮小圖片:收縮到9*8的大小,以便它有72的像素點
轉化為灰度圖
計算差異值:dHash算法工作在相鄰像素之間,這樣每行9個像素之間產生了8個不同的差異,一共8行,則產生了64個差異值
獲得指紋:如果左邊的像素比右邊的更亮,則記錄為1,否則為0.
最后比對兩張圖片的指紋,獲得漢明距離即可。
- dHash:
#差值感知算法
def dhash(image1,image2):
image1 = cv2.resize(image1,(9,8))
image2 = cv2.resize(image2,(9,8))
gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) #切換至灰度圖
gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
hash1 = dhashcaulate(gray1)
hash2 = dhashcaulate(gray2)
return Hamming_distance(hash1,hash2)
def dhashcaulate(gray):
hash_str = ''
for i in range(8):
for j in range(8):
if gray[i, j] > gray[i, j + 1]:
hash_str = hash_str + '1'
else:
hash_str = hash_str + '0'
return hash_str
