有意思的基礎知識
函數Functions與閉包Closure
我們今天再來看看函數。
在Rust,函數由關鍵詞:fn來定義。
如果有參數,必須定義參數的數據類型。
一般情況下,函數返回元組( tuple )類型,如果要返回特定的類型,一般要用符號:
->
來定義。
請看代碼如下:
1.main函數:
fn main() {
println!("Hello, world!");
}
2.傳遞參數:
fn print_sum(a: i8, b: i8) {
println!("sum is: {}", a + b);
}
3.有返回值:
/ 01. Without the return keyword. Only last expression returns.
fn plus_one(a: i32) -> i32 {
a + 1
// There is no ending ; in the above line. It means this is an expression which equals to `return a+1;`
}
// 02. With the return keyword.
fn plus_two(a: i32) -> i32 {
return a + 2; // Returns a+2. But, this's a bad practice.
// Should use only on conditional returns, except in the last expression
}
4.函數指針,作為數據類型:
// 01. Without type declarations
let b = plus_one;
let c = b(5); //6
// 02. With type declarations
let b: fn(i32) -> i32 = plus_one;
let c = b(5); //6
閉包:
1.閉包,即匿名函數或lambda函數。
2.參數類型與返回值,是可選的。
閉包,一句話來說,就是特殊的函數。
首先我們來看看正常函數:
fn main() {
let x = 2;
println!("{}", get_square_value(x));
}
fn get_square_value(x: i32) -> i32 {
x * x
}
然后,我們用閉包來改寫:
fn main() {
let x = 2;
let square = |x: i32| -> i32 { // Input parameters are passed inside | | and expression body is wrapped within { }
x * x
};
println!("{}", square(x));
}
進一步簡寫:
fn main() {
let x = 2;
let square = |x| x * x; // { } are optional for single-lined closures
println!("{}", square(x));
}
我們來簡單對比一下函數與閉包,請看下面程序 :
fn main() {
// 函數形式:累加1.
fn function(i: i32) -> i32 {
i + 1
}
//閉包形式:完整定義
let closure_annotated = |i: i32| -> i32 { i + 1 };
//閉包形式:簡化定義,利用rust的類型推導功能自動進行類型推導,這個更常用
let closure_inferred = |i| i + 1;
let i = 1;
// 調用函數與閉包
println!("function: {}", function(i));
println!("closure_annotated: {}", closure_annotated(i));
println!("closure_inferred: {}", closure_inferred(i));
//簡單的閉包,只返回一個integer值,返回值 類型將如系統自動推導,即系統對1這個數字,自動判斷,並推導出它是integer
let one = || 1;
println!("closure returning one: {}", one());
}
我們看到,函數定義更復雜。
我們再來看看下面的程序,比對一下:
fn main() {
let x = 4;//定義一個integer變量
// 函數形式:累加.
fn function(i: i32) -> i32 {
i + x//!!!!!這里編譯報錯!!!,函數不能從運行環境上獲取其他變量!!!!
}
//閉包形式:完整定義
let closure_annotated = |i: i32| -> i32 { i + x };//用閉包可以從環境中獲取x變量
//閉包形式:簡化定義,這個更常用
let closure_inferred = |i| i + x;
let i = 1;
// 調用函數與閉包
println!("function: {}", function(i));
println!("closure_annotated: {}", closure_annotated(i));
println!("closure_inferred: {}", closure_inferred(i));
//簡單的閉包,只返回一個integer值,返回值 類型將如系統自動推導,即系統對1這個數字,自動判斷,並推導出它是integer
let one = || 1;
println!("closure returning one: {}", one());
}
編譯器報錯!
編譯器詳細錯誤信息為:
error[E0434]: can't capture dynamic environment in a fn item
--> src\main.rs:5:13
|
5 | i + x
| ^
|
= help: use the `|| { ... }` closure form instead
這里的編譯器詳細指出:函數不能動態從環境(當前運行環境或上下文)獲得x,並提示用閉包。
我們再來看看如下代碼:
fn main() {
use std::mem;
let color = "green";
// A closure to print `color` which immediately borrows (`&`) `color` and
// stores the borrow and closure in the `print` variable. It will remain
// borrowed until `print` is used the last time.
//
// `println!` only requires arguments by immutable reference so it doesn't
// impose anything more restrictive.
//定義一個簡單的打印閉包,直接共享借用color變量,並把閉包綁定到print變量
let print = || println!("`color`: {}", color);
// Call the closure using the borrow.
//直接調用這個閉包(借用color)
print();
// `color` can be borrowed immutably again, because the closure only holds
// an immutable reference to `color`.
//color變量可以再次共享借用_reborrow,因為閉包print只是用了共享借用color
let _reborrow = &color;
print();
// A move or reborrow is allowed after the final use of `print`
//上面調用 了print()閉包后,這個color可以移動move(即轉移其數據所有權)
let _color_moved = color;
let mut count = 0;
// A closure to increment `count` could take either `&mut count` or `count`
// but `&mut count` is less restrictive so it takes that. Immediately
// borrows `count`.
//
// A `mut` is required on `inc` because a `&mut` is stored inside. Thus,
// calling the closure mutates the closure which requires a `mut`.
//這里用可變借用變量count, 所以閉包也定義為可變的引用
let mut inc = || {
count += 1;
println!("`count`: {}", count);
};
// Call the closure using a mutable borrow.
//通過可變借用調用閉包
inc();
// The closure still mutably borrows `count` because it is called later.
// An attempt to reborrow will lead to an error.
// let _reborrow = &count;//這里如果共享借用將報錯,因為count已經可變借用給閉包,再借用將通不過編譯器
// ^ TODO: try uncommenting this line.
inc();
// The closure no longer needs to borrow `&mut count`. Therefore, it is
// possible to reborrow without an error
//這個語句下面,沒有再調用inc()閉包的代碼,即現在閉包沒有再可變借用變更count,現在就可以用可變借用來借用count
let _count_reborrowed = &mut count;
// A non-copy type.
//定義一個引用變更或智能指針變量(非復制類型)
let movable = Box::new(3);
// `mem::drop` requires `T` so this must take by value. A copy type
// would copy into the closure leaving the original untouched.
// A non-copy must move and so `movable` immediately moves into
// the closure.
//定義一個閉包,把變量movable移動到閉包里,用方法mem::drop直接把變量內存釋放
let consume = || {
println!("`movable`: {:?}", movable);
mem::drop(movable);
};
// `consume` consumes the variable so this can only be called once.
//調用閉包方consume直接把變量釋放掉,所以這個閉包只能調用一次
consume();
// consume();//第二次調用會報錯!
// ^ TODO: Try uncommenting this lines.
}
上面的代碼用來以下兩個標准庫
以上代碼打印結果為:
`color`: green
`color`: green
`count`: 1
`count`: 2
`movable`:
我們再來看看更復雜的例子,把閉包當作一個輸入參數:
// A function which takes a closure as an argument and calls it.
// <F> denotes that F is a "Generic type parameter"
//定義一個函數apply,其參數為:F類型的閉包
fn apply<F>(f: F)
where
// The closure takes no input and returns nothing.
//這里指定F類型的閉包為FnOnce類型,即它只能調用一次
//這個閉包沒有參數與沒有返回值
F: FnOnce(),
{
// ^ TODO: Try changing this to `Fn` or `FnMut`.
//可以嘗試改變這個F類型為 Fn(不可變函數)或FnMut(可變函數)
f();
}
// A function which takes a closure and returns an `i32`.
//定義一個函數apply_to_3,其參數為閉包,返回值為i32
fn apply_to_3<F>(f: F) -> i32
where
// The closure takes an `i32` and returns an `i32`.
//定義這個閉包類型為Fn(不可變函數),返回一個i32值
F: Fn(i32) -> i32,
{
f(3)
}
fn main() {
use std::mem;
let greeting = "hello";
// A non-copy type.
// `to_owned` creates owned data from borrowed one
//非復制類型
//to_owned()方法從一個借用變量中得到數據所有權
let mut farewell = "goodbye".to_owned();
// Capture 2 variables: `greeting` by reference and
// `farewell` by value.
//閉包獲取兩個變量:
//通過引用獲取greeting
//通過值 獲取farewell
let diary = || {
// `greeting` is by reference: requires `Fn`.
//greeting從引用獲取值
println!("I said {}.", greeting);
// Mutation forces `farewell` to be captured by
// mutable reference. Now requires `FnMut`.
//farewell從可變引用得到數據值,所以是可修改的
farewell.push_str("!!!");
println!("Then I screamed {}.", farewell);
println!("Now I can sleep. zzzzz");
// Manually calling drop forces `farewell` to
// be captured by value. Now requires `FnOnce`.
//手動地釋放farewell的資源
mem::drop(farewell);
};
// Call the function which applies the closure.
//把閉包diary當作一個參數傳給函數apply
apply(diary);
// `double` satisfies `apply_to_3`'s trait bound
//定義一個閉包,乘以2
let double = |x| 2 * x;
println!("3 doubled: {}", apply_to_3(double));
}
以上結果為:
I said hello.
Then I screamed goodbye!!!.
Now I can sleep. zzzzz
3 doubled: 6
我們看到有一個where關鍵詞,我們這里簡單介紹下where的用法 。
之前,我們再來討論一下特征變量的綁定,如下:
// Define a function `printer` that takes a generic type `T` which
// must implement trait `Display`.
//定義一個printer的函數,這個函數的參數T,必須實現特征Display
fn printer<T: Display>(t: T) {
println!("{}", t);
}
上面就是簡單的特征變量的綁定,那T也可以綁定多個特征:
use std::fmt::{Debug, Display};
fn compare_prints<T: Debug + Display>(t: &T) {
println!("Debug: `{:?}`", t);
println!("Display: `{}`", t);
}
fn compare_types<T: Debug, U: Debug>(t: &T, u: &U) {
println!("t: `{:?}`", t);
println!("u: `{:?}`", u);
}
fn main() {
let string = "words";
let array = [1, 2, 3];
let vec = vec![1, 2, 3];
compare_prints(&string);
//compare_prints(&array);
// TODO ^ Try uncommenting this.
compare_types(&array, &vec);
}
那這個多個特征綁定定義,就可以用where語句來表示,更加清晰,如下兩種定義是一樣的:
impl <A: TraitB + TraitC, D: TraitE + TraitF> MyTrait<A, D> for YourType {}
// Expressing bounds with a `where` clause
//用where子語句來定義多個特征綁定定義
impl <A, D> MyTrait<A, D> for YourType where
A: TraitB + TraitC,
D: TraitE + TraitF {}
我們來看看例子:
use std::fmt::Debug;
trait PrintInOption {
fn print_in_option(self);
}
// Because we would otherwise have to express this as `T: Debug` or
// use another method of indirect approach, this requires a `where` clause:
impl<T> PrintInOption for T where
Option<T>: Debug {
// We want `Option<T>: Debug` as our bound because that is what's
// being printed. Doing otherwise would be using the wrong bound.
fn print_in_option(self) {
println!("{:?}", Some(self));
}
}
fn main() {
let vec = vec![1, 2, 3];
vec.print_in_option();
}
上面代碼結果為:
Some([1, 2, 3])
以上就是Rust的函數與閉包的基本知識。
如果遇到什么問題,歡迎加入:rust新手群,在這里我可以提供一些簡單的幫助,加微信:360369487,注明:博客園+rust