在測試中,系統登錄用到滑動驗證碼,根據系統驗證碼圖片的策略,分為有兩種定位模式;


左邊的圖是不帶缺口的,需要點擊拖動之后才有缺口模塊圖片出來;
右邊的是帶缺口的的背景圖,以及缺口滑塊的圖;
我們在自動化測試,拖動滑塊右移,主要難點就是確定缺口的橫坐標X;
兩種定位模式有啥區別呢?
主要體現在識別圖片上缺口的位置上;
左邊的識別方式是:保存無缺口的圖1和有缺口的圖2,對比兩張圖所有的RBG像素點,得到不一樣的像素點,得到缺口的坐標位置;
右邊的識別方式是:保存缺塊圖3和缺塊背景圖4,通過OpenCV提供了一個函數cv2.matchTemplate(),在較大背景圖像4中搜索和查找模板圖像3位置的方法。
我們系統用的是右邊的方式,在鼠標放到滑動驗證碼拖動塊上,圖片顯示出來,具體代碼如下:
from PIL import Image
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
import cv2
import numpy as np
from io import BytesIO
import time
import requests
import os
class CrackSlider():
"""
通過瀏覽器截圖,識別驗證碼中缺口位置,獲取需要滑動距離,並模仿人類行為破解滑動驗證碼
"""
def __init__(self):
self.url = 'https://localhost/test/#/login'
self.driver = webdriver.Firefox()
self.wait = WebDriverWait(self.driver, 20)
self.zoom = 1
def open(self):
self.driver.get(self.url)
def get_pic(self):
time.sleep(2)
# 因為驗證碼模塊需要鼠標位移上,才會顯示,所以為了方便,通過js修改了顯示屬性,讓元素可見
js = "document.getElementsByClassName('yidun_panel')[0].style.display='block';"
# 調用js腳本
self.driver.execute_script(js)
target = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'yidun_bg-img')))
template = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'yidun_jigsaw')))
target_link = target.get_attribute('src')
template_link = template.get_attribute('src')
target_img = Image.open(BytesIO(requests.get(target_link).content))
template_img = Image.open(BytesIO(requests.get(template_link).content))
target_img.save('target.jpg')
template_img.save('template.png')
local_img = Image.open('target.jpg')
size_loc = local_img.size
self.zoom = 320 / int(size_loc[0])
def crack_slider(self):
slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider')))
ActionChains(self.driver).click_and_hold(slider).perform()
for track in tracks['forward_tracks']:
ActionChains(self.driver).move_by_offset(xoffset=track, yoffset=0).perform()
time.sleep(0.5)
#for back_tracks in tracks['back_tracks']:
# ActionChains(self.driver).move_by_offset(xoffset=back_tracks, yoffset=0).perform()
ActionChains(self.driver).move_by_offset(xoffset=-4, yoffset=0).perform()
ActionChains(self.driver).move_by_offset(xoffset=4, yoffset=0).perform()
time.sleep(0.5)
ActionChains(self.driver).release().perform()
def get_tracks(self, distance):
print(distance)
distance += 20
v = 0
t = 0.2
forward_tracks = []
current = 0
mid = distance * 3 / 5 #減速閥值
while current < distance:
if current < mid:
a = 5 #加速度為+2
else:
a = -3 #加速度-3
s = v * t + 0.5 * a * (t ** 2)
v = v + a * t
current += s
forward_tracks.append(round(s))
back_tracks = [-3, -3, -2, -2, -2, -2, -2, -1, -1, -1]
return {'forward_tracks': forward_tracks, 'back_tracks': back_tracks}
def match(self, target, template):
img_rgb = cv2.imread(target)
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread(template, 0)
run = 1
w, h = template.shape[::-1]
print(w, h)
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
run = 1
# 使用二分法查找閾值的精確值
L = 0
R = 1
while run < 20:
run += 1
threshold = (R + L) / 2
print(threshold)
if threshold < 0:
print('Error')
return None
loc = np.where(res >= threshold)
print(len(loc[1]))
if len(loc[1]) > 1:
L += (R - L) / 2
print('目標區域起點x坐標為1:%d' % loc[1][0])
elif len(loc[1]) == 1:
print('目標區域起點x坐標為2:%d' % loc[1][0])
break
elif len(loc[1]) < 1:
#print('目標區域起點x坐標為3:%d' % loc[1][0])
R -= (R - L) / 2
return loc[1][0]
if __name__ == '__main__':
cs = CrackSlider()
cs.open()
target = 'target.jpg'
template = 'template.png'
cs.get_pic()
distance = cs.match(target, template)
tracks = cs.get_tracks((distance + 7) * cs.zoom) # 對位移的縮放計算
cs.crack_slider()
