人臉識別系列(十七):ArcFace/Insight Face
論文鏈接:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
作者開源代碼:https://github.com/deepinsight/insightface
這篇論文原名是ArcFace,但是由於與虹軟重名,后改名為Insight Face。
其實這篇論文可以看作是AmSoftmax/CosFace的一種改進版本,總體思路相對較為簡單。
AmSoftmax:
不是很熟悉的讀者可以參考我之前的博客
人臉識別系列(十六):AMSoftmax
Arcface:
這樣修改的原因:
角度距離比余弦距離在對角度的影響更加直接
決策邊界的具體比較如下圖
IR
除了損失函數的改進之外,作者還提出了一種稱為IR的網絡結構,就是對Resnet的block進行了一些改進,文章說更適合對人臉圖片的訓練了
實驗
使用了幾種網絡結構作實驗,包括MobileNet、 Inception-
Resnet-V2、Densely connected convolutional networks
(DenseNet)、Squeeze and excitation networks
(SE) 和Dual path Network (DPN)
實驗結果如下:
lfw得分
MegaFace得分
截止當前(2018年3月),是MegaFace榜第一,達到了98.36%的成績,但是因為作者對動了MegaFace中的數據,將FaceScrub與MegaFace1M干擾項中重疊的部分去除了,(這也就是表中R的含義),因此不能體現該算法對其他算法有絕對的優勢。
即便如此,這篇論文以及作者開源的代碼對人臉識別研究做出的貢獻也是不可磨滅的。