1、LIMIT 語句
分頁查詢是最常用的場景之一,但也通常也是最容易出問題的地方。比如對於下面簡單的語句,一般 DBA 想到的辦法是在 type, name, create_time 字段上加組合索引。這樣條件排序都能有效的利用到索引,性能迅速提升。
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
ORDER BY create_time
LIMIT 1000, 10;
好吧,可能 90% 以上的 DBA 解決該問題就到此為止。但當 LIMIT 子句變成 “LIMIT 1000000,10” 時,程序員仍然會抱怨:我只取 10 條記錄為什么還是慢?
要知道數據庫也並不知道第 1000000 條記錄從什么地方開始,即使有索引也需要從頭計算一次。出現這種性能問題,多數情形下是程序員偷懶了。
在前端數據瀏覽翻頁,或者大數據分批導出等場景下,是可以將上一頁的最大值當成參數作為查詢條件的。SQL 重新設計如下:
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
AND create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;
在新設計下查詢時間基本固定,不會隨着數據量的增長而發生變化。
2、隱式轉換
SQL 語句中查詢變量和字段定義類型不匹配是另一個常見的錯誤。比如下面的語句:
mysql> explain extended SELECT *
> FROM my_balance b
> WHERE b.bpn = 14000000123
> AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'
其中字段 bpn 的定義為 varchar(20),MySQL 的策略是將字符串轉換為數字之后再比較。函數作用於表字段,索引失效。
上述情況可能是應用程序框架自動填入的參數,而不是程序員的原意。現在應用框架很多很繁雜,使用方便的同時也小心它可能給自己挖坑。
3、關聯更新、刪除
雖然 MySQL5.6 引入了物化特性,但需要特別注意它目前僅僅針對查詢語句的優化。對於更新或刪除需要手工重寫成 JOIN。
比如下面 UPDATE 語句,MySQL 實際執行的是循環 / 嵌套子查詢(DEPENDENT SUBQUERY),其執行時間可想而知。
UPDATE operation o
SET status = 'applying'
WHERE o.id IN (SELECT id
FROM (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t);
執行計划:
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
重寫為 JOIN 之后,子查詢的選擇模式從 DEPENDENT SUBQUERY 變成 DERIVED,執行速度大大加快,從 7 秒降低到 2 毫秒
UPDATE operation o
JOIN (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t
ON o.id = t.id
SET status = 'applying'
執行計划簡化為:
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
4、混合排序
MySQL 不能利用索引進行混合排序。但在某些場景,還是有機會使用特殊方法提升性能的。
SELECT *
FROM my_order o
INNER JOIN my_appraise a ON a.orderid = o.id
ORDER BY a.is_reply ASC,
a.appraise_time DESC
LIMIT 0, 20
執行計划顯示為全表掃描:
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |
| 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+
由於 is_reply 只有 0 和 1 兩種狀態,我們按照下面的方法重寫后,執行時間從 1.58 秒降低到 2 毫秒。
SELECT *
FROM ((SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 0
ORDER BY appraise_time DESC
LIMIT 0, 20)
UNION ALL
(SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 1
ORDER BY appraise_time DESC
LIMIT 0, 20)) t
ORDER BY is_reply ASC,
appraisetime DESC
LIMIT 20;
5、EXISTS語句
MySQL 對待 EXISTS 子句時,仍然采用嵌套子查詢的執行方式。如下面的 SQL 語句:
SELECT *
FROM my_neighbor n
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = 'xxx'
WHERE n.topic_status < 4
AND EXISTS(SELECT 1
FROM message_info m
WHERE n.id = m.neighbor_id
AND m.inuser = 'xxx')
AND n.topic_type <> 5
執行計划為:
+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
| 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where |
| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
| 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
去掉 exists 更改為 join,能夠避免嵌套子查詢,將執行時間從 1.93 秒降低為 1 毫秒。
SELECT *
FROM my_neighbor n
INNER JOIN message_info m
ON n.id = m.neighbor_id
AND m.inuser = 'xxx'
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = 'xxx'
WHERE n.topic_status < 4
AND n.topic_type <> 5
新的執行計划:
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition |
| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |
| 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
6、條件下推
外部查詢條件不能夠下推到復雜的視圖或子查詢的情況有:
聚合子查詢;
含有 LIMIT 的子查詢;
UNION 或 UNION ALL 子查詢;
輸出字段中的子查詢;
如下面的語句,從執行計划可以看出其條件作用於聚合子查詢之后
SELECT *
FROM (SELECT target,
Count(*)
FROM operation
GROUP BY target) t
WHERE target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| 1 | PRIMARY | <derived2> | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where |
| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
確定從語義上查詢條件可以直接下推后,重寫如下:
SELECT target,
Count(*)
FROM operation
WHERE target = 'rm-xxxx'
GROUP BY target
執行計划變為:
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
7、提前縮小范圍
先上初始 SQL 語句:
SELECT *
FROM my_order o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
該 SQL 語句原意是:先做一系列的左連接,然后排序取前 15 條記錄。從執行計划也可以看出,最后一步估算排序記錄數為 90 萬,時間消耗為 12 秒。
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
由於最后 WHERE 條件以及排序均針對最左主表,因此可以先對 my_order 排序提前縮小數據量再做左連接。SQL 重寫后如下,執行時間縮小為 1 毫秒左右。
SELECT *
FROM (
SELECT *
FROM my_order o
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
) o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
ORDER BY o.selltime DESC
limit 0, 15
再檢查執行計划:子查詢物化后(select_type=DERIVED) 參與 JOIN。雖然估算行掃描仍然為 90 萬,但是利用了索引以及 LIMIT 子句后,實際執行時間變得很小。
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
8、中間結果集下推
再來看下面這個已經初步優化過的例子 (左連接中的主表優先作用查詢條件):
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
那么該語句還存在其它問題嗎?不難看出子查詢 c 是全表聚合查詢,在表數量特別大的情況下會導致整個語句的性能下降。
其實對於子查詢 c,左連接最后結果集只關心能和主表 resourceid 能匹配的數據。因此我們可以重寫語句如下,執行時間從原來的 2 秒下降到 2 毫秒。
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
但是子查詢 a 在我們的 SQL 語句中出現了多次。這種寫法不僅存在額外的開銷,還使得整個語句顯的繁雜。使用 WITH 語句再次重寫:
WITH a AS
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20)
SELECT a.*,
c.allocated
FROM a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
數據庫編譯器產生執行計划,決定着 SQL 的實際執行方式。但是編譯器只是盡力服務,所有數據庫的編譯器都不是盡善盡美的。
上述提到的多數場景,在其它數據庫中也存在性能問題。了解數據庫編譯器的特性,才能避規其短處,寫出高性能的 SQL 語句。
程序員在設計數據模型以及編寫 SQL 語句時,要把算法的思想或意識帶進來。
編寫復雜 SQL 語句要養成使用 WITH 語句的習慣。簡潔且思路清晰的 SQL 語句也能減小數據庫的負擔 。
“不積跬步,無以至千里”,希望未來的你能:有夢為馬 隨處可棲!加油,少年!
關注公眾號:「Java 知己」,每天更新Java知識哦,期待你的到來!
- 發送「Group」,與 10 萬程序員一起進步。
- 發送「面試」,領取BATJ面試資料、面試視頻攻略。
- 發送「玩轉算法」,領取《玩轉算法》系列視頻教程。
- 千萬不要發送「1024」...