python詞雲圖之WordCloud


1. 導入需要的包package

import matplotlib.pyplot as plt
from scipy.misc import imread
from wordcloud import WordCloud,STOPWORDS
import xlrd

2. 設置生成詞雲圖的背景圖片,最好是分辨率高且色彩邊界分明的圖片

def set_background(picpath):
    back_coloring = imread(picpath)# 設置背景圖片,png等圖片格式
    return back_coloring

3. 創建詞雲圖:WordCloud

def create_word_cloud(txt_str, back_coloring):  #txt_str表示導入的是字符串格式數據,#back_color表示的是背景圖片位置
    print('---- 根據詞頻,開始生成詞雲! ----')
    font = r'C:\Windows\Fonts\simsun.ttc' #加載顯示字體
    wc = WordCloud(
        font_path=font,
        collocations=False,  # 去重,如果不加,詞雲圖會顯示相同的詞
        stopwords=STOPWORDS,  #加載停用詞,如果不自己指定,則會加載默認的停用詞
        max_words=100,
        width=2000,
        height=1200,
       # background_color='white',
       mask=back_coloring,
    )
    wordcloud = wc.generate(txt_str)
    # 寫詞雲圖片
    wordcloud.to_file(".\wordcloud_test.png")
    # 顯示詞雲文件
    plt.imshow(wordcloud)
    plt.axis("off")
    plt.show()

4. 默認的停用詞一般在:假如anaconda安裝在D盤,則會在其目錄:D:\Anaconda3\Lib\site-packages\wordcloud\stopwords,其中都是英文詞,例如:

 

 注意:也可以在jieba分詞中,先利用自己的停用詞,得到去除停用詞之后的文本字符串來繪制詞雲圖:https://www.cnblogs.com/qi-yuan-008/p/11689530.html

5. 此時,詞雲圖無法顯示數字,這是因為 wc.generate 操作中,有去除數字的語句:在wordcloud.py中,第560行左右,所以想要顯示數字,需要先注釋這一行

 

 6. 假設想要顯示的詞,已經經過jieba分詞,保存在txt文檔中,則繪制詞雲圖的方法是:

例如:txt中是每行是一個詞

 

 則,先讀取txt文件,形成字符串格式文本,再繪制

if __name__ == '__main__': 
    picpath = r".\xxx.png" #背景圖片路徑
    back_coloring = set_background(picpath)
    
    with open(r".\jieba_分詞數據.txt", "r",encoding='utf-8') as f:
        remove_stop_str = f.read()
    
    create_word_cloud(remove_stop_str, back_coloring)

7. 如果通過jieba分詞的數據已經處理成了(詞, 詞頻)並保存在excel中,例如這種兩列格式的excel表,第一行是標簽如(詞, 詞頻):

 

則可以先讀取詞頻再顯示,python讀取excel數據可以通過 xlrd.open_workbook 方法:

def read_from_xls(filepath,index_sheet):
    #讀取文件名,filepath是excel文件的路徑,index_sheet是第幾個sheet
    #讀取表格#
    # 設置GBK編碼
    xlrd.Book.encoding = "gbk"
    rb = xlrd.open_workbook(filepath)
    print(rb)

    sheet = rb.sheet_by_index(index_sheet)
    nrows = sheet.nrows
    data_tmp = []

    for i in range(nrows - 1):
        tt=i+1  #excel的第一行是標簽
        tmp_char = [str(sheet.cell_value(tt,0))] #第一列是詞
        tmp_num = int(sheet.cell_value(tt,1))    #第二列是詞頻
        data_tmp.extend(tmp_char*tmp_num)
    return data_tmp

然后,讀數據和生成詞雲圖:

if __name__ == '__main__': 
    picpath = r".\xxx.png"
    back_coloring = set_background(picpath)
    
    data_dic = read_from_xls(r'D:\Python_workspace\spyder_space\jieba分詞表.xlsx',0)
    data_dic_str = '\n'.join(data_dic)  #轉成字符串格式
    
    create_word_cloud(data_dic_str, back_coloring)

8. 總結代碼

# -*- coding: utf-8 -*-
"""
Created on Mon Aug 19 10:47:17 2019

@author: Administrator
"""
import matplotlib.pyplot as plt
from scipy.misc import imread
from wordcloud import WordCloud,STOPWORDS
import xlrd

def set_background(picpath):
    back_coloring = imread(picpath)# 設置背景圖片
    return back_coloring

def create_word_cloud(txt_str, back_coloring):
    print('---- 根據詞頻,開始生成詞雲! ----')
    font = r'C:\Windows\Fonts\simsun.ttc'
    wc = WordCloud(
        font_path=font,
        collocations=False,  # 去重
        stopwords=STOPWORDS,
        max_words=100,
        width=2000,
        height=1200,
       # background_color='white',
       mask=back_coloring,
    )
    wordcloud = wc.generate(txt_str)
    # 寫詞雲圖片
    wordcloud.to_file(".\wordcloud_test.png")
    # 顯示詞雲文件
    plt.imshow(wordcloud)
    plt.axis("off")
    plt.show()

def read_from_xls(filepath,index_sheet):
    #讀取文件名
    #讀取表格#
    # 設置GBK編碼
    xlrd.Book.encoding = "gbk"
    rb = xlrd.open_workbook(filepath)
    print(rb)

    sheet = rb.sheet_by_index(index_sheet)
    nrows = sheet.nrows
    data_tmp = []

    for i in range(nrows - 1):
        tt=i+1
        tmp_char = [str(sheet.cell_value(tt,0))]
        tmp_num = int(sheet.cell_value(tt,1))
        data_tmp.extend(tmp_char*tmp_num)
    return data_tmp

if __name__ == '__main__': 
    picpath = r".\xxx.png"
    back_coloring = set_background(picpath)
    data_dic = read_from_xls(r'D:\Python_workspace\spyder_space\jieba分詞表.xlsx',0)
    data_dic_str = '\n'.join(data_dic)
    
#    with open(r".\jieba_分詞數據.txt", "r",encoding='utf-8') as f: 
#    remove_stop_str = f.read()  

  create_word_cloud(data_dic_str, back_coloring) 

 

# 當然繪制詞雲圖的方法有很多,這只是其中的一種


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM