Kafka producer異步發送在某些情況會阻塞主線程,使用時候慎重


最近發現一個Kafka producer異步發送在某些情況會阻塞主線程,后來在排查解決問題過程中發現這可以算是Kafka的一個說明不恰當的地方。

問題說明

在很多場景下我們會使用異步方式來發送Kafka的消息,會使用KafkaProducer中的以下方法:

public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {}

根據文檔的說明它是一個異步的發送方法,按道理不管如何它都不應該阻塞主線程,但實際中某些情況下會出現阻塞線程,比如broker未正確運行,topic未創建等情況,有些時候我們不需要對發送的結果做保證,但是如果出現阻塞的話,會影響其他業務邏輯。

問題出現點

從KafkaProducer send這個方法聲明上看並沒有什么問題,那么我們來看一下她的具體實現:

public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
    // intercept the record, which can be potentially modified; this method does not throw exceptions
    ProducerRecord<K, V> interceptedRecord = this.interceptors.onSend(record);
    return doSend(interceptedRecord, callback);
}

/**
  * Implementation of asynchronously send a record to a topic.
  */
private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
    TopicPartition tp = null;
    try {
        throwIfProducerClosed();
        // first make sure the metadata for the topic is available
        ClusterAndWaitTime clusterAndWaitTime;
        try {
            clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs);  //出現問題的地方
        } catch (KafkaException e) {
            if (metadata.isClosed())
                throw new KafkaException("Producer closed while send in progress", e);
            throw e;
        }
        ...
    } catch (ApiException e) {
        ...
    }
}

private ClusterAndWaitTime waitOnMetadata(String topic, Integer partition, long maxWaitMs) throws InterruptedException {
    // add topic to metadata topic list if it is not there already and reset expiry
    Cluster cluster = metadata.fetch();

    if (cluster.invalidTopics().contains(topic))
        throw new InvalidTopicException(topic);

    metadata.add(topic);

    Integer partitionsCount = cluster.partitionCountForTopic(topic);
    // Return cached metadata if we have it, and if the record's partition is either undefined
    // or within the known partition range
    if (partitionsCount != null && (partition == null || partition < partitionsCount))
        return new ClusterAndWaitTime(cluster, 0);

    long begin = time.milliseconds();
    long remainingWaitMs = maxWaitMs;
    long elapsed;
    
    //一直獲取topic的元數據信息,直到獲取成功,若獲取時間超過maxWaitMs,則拋出異常
    do {
        if (partition != null) {
            log.trace("Requesting metadata update for partition {} of topic {}.", partition, topic);
        } else {
            log.trace("Requesting metadata update for topic {}.", topic);
        }
        metadata.add(topic);
        int version = metadata.requestUpdate();
        sender.wakeup();
        try {
            metadata.awaitUpdate(version, remainingWaitMs);
        } catch (TimeoutException ex) {
            // Rethrow with original maxWaitMs to prevent logging exception with remainingWaitMs
            throw new TimeoutException(
                    String.format("Topic %s not present in metadata after %d ms.",
                            topic, maxWaitMs));
        }
        cluster = metadata.fetch();
        elapsed = time.milliseconds() - begin;
        if (elapsed >= maxWaitMs) {  //判斷執行時間是否大於maxWaitMs
            throw new TimeoutException(partitionsCount == null ?
                    String.format("Topic %s not present in metadata after %d ms.",
                            topic, maxWaitMs) :
                    String.format("Partition %d of topic %s with partition count %d is not present in metadata after %d ms.",
                            partition, topic, partitionsCount, maxWaitMs));
        }
        metadata.maybeThrowException();
        remainingWaitMs = maxWaitMs - elapsed;
        partitionsCount = cluster.partitionCountForTopic(topic);
    } while (partitionsCount == null || (partition != null && partition >= partitionsCount));

    return new ClusterAndWaitTime(cluster, elapsed);
}

從它的實現我們可以看出,會導致線程阻塞的原因在於以下這個邏輯:

private ClusterAndWaitTime waitOnMetadata(String topic, Integer partition, long maxWaitMs) throws InterruptedException

通過KafkaProducer 執行send的過程中需要先獲取Metadata,而這是一個不斷循環的操作,直到獲取成功,或者拋出異常。

其實Kafka本意這么實現並沒有問題,因為你要發送消息的前提就是能獲取到border和topic的信息,問題在於這個send對外暴露的是Future的方法,但是內部實現卻是有阻塞的,那么在有些時候沒有考慮到這種情況,一旦出現border或者topic異常,將會阻塞系統線程,導致系統響應變慢,直到奔潰。

問題解決

其實解決這個問題很簡單,就是單獨創建幾個線程用於消息發送,這樣即使遇到意外情況,也只會阻塞幾個線程,不會引起系統線程大面積阻塞,不可用,具體實現:

import java.util.concurrent.Callable
import java.util.concurrent.ExecutorService
import java.util.concurrent.Executors
import org.apache.kafka.clients.producer.{Callback, KafkaProducer, ProducerRecord, RecordMetadata}

class ProducerF[K,V](kafkaProducer: KafkaProducer[K,V]) {

  val executor: ExecutorService = Executors.newScheduledThreadPool(1)

  def sendAsync(producerRecord: ProducerRecord[K,V], callback: Callback) = {
    executor.submit(new Callable[RecordMetadata]() {
      def call = kafkaProducer.send(producerRecord, callback).get()
    })
  }
}

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM