單例模式(Singleton Pattern)是 Java 中最簡單的設計模式之一。這種類型的設計模式屬於創建型模式,它提供了一種創建對象的最佳方式。
這種模式涉及到一個單一的類,該類負責創建自己的對象,同時確保只有單個對象被創建。這個類提供了一種訪問其唯一的對象的方式,可以直接訪問,不需要實例化該類的對象。
注意:
- 1、單例類只能有一個實例。
- 2、單例類必須自己創建自己的唯一實例。
- 3、單例類必須給所有其他對象提供這一實例。
介紹
意圖:保證一個類僅有一個實例,並提供一個訪問它的全局訪問點。
主要解決:一個全局使用的類頻繁地創建與銷毀。
何時使用:當您想控制實例數目,節省系統資源的時候。
如何解決:判斷系統是否已經有這個單例,如果有則返回,如果沒有則創建。
關鍵代碼:構造函數是私有的。
應用實例:
- 1、一個班級只有一個班主任。
- 2、Windows 是多進程多線程的,在操作一個文件的時候,就不可避免地出現多個進程或線程同時操作一個文件的現象,所以所有文件的處理必須通過唯一的實例來進行。
- 3、一些設備管理器常常設計為單例模式,比如一個電腦有兩台打印機,在輸出的時候就要處理不能兩台打印機打印同一個文件。
優點:
- 1、在內存里只有一個實例,減少了內存的開銷,尤其是頻繁的創建和銷毀實例(比如管理學院首頁頁面緩存)。
- 2、避免對資源的多重占用(比如寫文件操作)。
缺點:沒有接口,不能繼承,與單一職責原則沖突,一個類應該只關心內部邏輯,而不關心外面怎么樣來實例化。
使用場景:
- 1、要求生產唯一序列號。
- 2、WEB 中的計數器,不用每次刷新都在數據庫里加一次,用單例先緩存起來。
- 3、創建的一個對象需要消耗的資源過多,比如 I/O 與數據庫的連接等。
注意事項:getInstance() 方法中需要使用同步鎖 synchronized (Singleton.class) 防止多線程同時進入造成 instance 被多次實例化。
單例模式的寫法有好幾種,這里主要介紹三種:懶漢式單例、餓漢式單例、登記式單例
一、懶漢式單例
//懶漢式單例類.在第一次調用的時候實例化自己 public class Singleton { private Singleton() {} private static Singleton single=null; //靜態工廠方法 public static Singleton getInstance() { if (single == null) { single = new Singleton(); } return single; } }
(事實上,通過Java反射機制是能夠實例化構造方法為private的類的,那基本上會使所有的Java單例實現失效。此問題在此處不做討論,姑且掩耳盜鈴地認為反射機制不存在。)
但是以上懶漢式單例的實現沒有考慮線程安全問題,它是線程不安全的,並發環境下很可能出現多個Singleton實例,要實現線程安全,有以下三種方式,都是對getInstance這個方法改造,保證了懶漢式單例的線程安全,如果你第一次接觸單例模式,對線程安全不是很了解,可以先跳過下面這三小條,去看餓漢式單例,等看完后面再回頭考慮線程安全的問題:
1、在getInstance方法上加同步
public static synchronized Singleton getInstance() { if (single == null) { single = new Singleton(); } return single; }
2、雙重檢查鎖定
public static Singleton getInstance() { if (singleton == null) { synchronized (Singleton.class) { if (singleton == null) { singleton = new Singleton(); } } } return singleton; }
3、靜態內部類
public class Singleton { private static class LazyHolder { private static final Singleton INSTANCE = new Singleton(); } private Singleton (){} public static final Singleton getInstance() { return LazyHolder.INSTANCE; } }
這種比上面1、2都好一些,既實現了線程安全,又避免了同步帶來的性能影響。
二、餓漢式單例
//餓漢式單例類.在類初始化時,已經自行實例化 public class Singleton1 { private Singleton1() {} private static final Singleton1 single = new Singleton1(); //靜態工廠方法 public static Singleton1 getInstance() { return single; } }
餓漢式在類創建的同時就已經創建好一個靜態的對象供系統使用,以后不再改變,所以天生是線程安全的。
三、登記式單例(可忽略)
//類似Spring里面的方法,將類名注冊,下次從里面直接獲取。 public class Singleton3 { private static Map<String,Singleton3> map = new HashMap<String,Singleton3>(); static{ Singleton3 single = new Singleton3(); map.put(single.getClass().getName(), single); } //保護的默認構造子 protected Singleton3(){} //靜態工廠方法,返還此類惟一的實例 public static Singleton3 getInstance(String name) { if(name == null) { name = Singleton3.class.getName(); System.out.println("name == null"+"--->name="+name); } if(map.get(name) == null) { try { map.put(name, (Singleton3) Class.forName(name).newInstance()); } catch (InstantiationException e) { e.printStackTrace(); } catch (IllegalAccessException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } } return map.get(name); } //一個示意性的商業方法 public String about() { return "Hello, I am RegSingleton."; } public static void main(String[] args) { Singleton3 single3 = Singleton3.getInstance(null); System.out.println(single3.about()); } }
登記式單例實際上維護了一組單例類的實例,將這些實例存放在一個Map(登記薄)中,對於已經登記過的實例,則從Map直接返回,對於沒有登記的,則先登記,然后返回。
這里我對登記式單例標記了可忽略,我的理解來說,首先它用的比較少,另外其實內部實現還是用的餓漢式單例,因為其中的static方法塊,它的單例在類被裝載的時候就被實例化了。
餓漢式和懶漢式區別
從名字上來說,餓漢和懶漢,
餓漢就是類一旦加載,就把單例初始化完成,保證getInstance的時候,單例是已經存在的了,
而懶漢比較懶,只有當調用getInstance的時候,才回去初始化這個單例。
另外從以下兩點再區分以下這兩種方式:
1、線程安全:
餓漢式天生就是線程安全的,可以直接用於多線程而不會出現問題,
懶漢式本身是非線程安全的,為了實現線程安全有幾種寫法,分別是上面的1、2、3,這三種實現在資源加載和性能方面有些區別。
2、資源加載和性能:
餓漢式在類創建的同時就實例化一個靜態對象出來,不管之后會不會使用這個單例,都會占據一定的內存,但是相應的,在第一次調用時速度也會更快,因為其資源已經初始化完成,
而懶漢式顧名思義,會延遲加載,在第一次使用該單例的時候才會實例化對象出來,第一次調用時要做初始化,如果要做的工作比較多,性能上會有些延遲,之后就和餓漢式一樣了。
至於1、2、3這三種實現又有些區別,
第1種,在方法調用上加了同步,雖然線程安全了,但是每次都要同步,會影響性能,畢竟99%的情況下是不需要同步的,
第2種,在getInstance中做了兩次null檢查,確保了只有第一次調用單例的時候才會做同步,這樣也是線程安全的,同時避免了每次都同步的性能損耗
第3種,利用了classloader的機制來保證初始化instance時只有一個線程,所以也是線程安全的,同時沒有性能損耗,所以一般我傾向於使用這一種。
什么是線程安全?
如果你的代碼所在的進程中有多個線程在同時運行,而這些線程可能會同時運行這段代碼。如果每次運行結果和單線程運行的結果是一樣的,而且其他的變量的值也和預期的是一樣的,就是線程安全的。
或者說:一個類或者程序所提供的接口對於線程來說是原子操作,或者多個線程之間的切換不會導致該接口的執行結果存在二義性,也就是說我們不用考慮同步的問題,那就是線程安全的。
應用
以下是一個單例類使用的例子,以懶漢式為例,這里為了保證線程安全,使用了雙重檢查鎖定的方式:
public class TestSingleton { String name = null; private TestSingleton() { } private static volatile TestSingleton instance = null; public static TestSingleton getInstance() { if (instance == null) { synchronized (TestSingleton.class) { if (instance == null) { instance = new TestSingleton(); } } } return instance; } public String getName() { return name; } public void setName(String name) { this.name = name; } public void printInfo() { System.out.println("the name is " + name); } }
可以看到里面加了volatile關鍵字來聲明單例對象,既然synchronized已經起到了多線程下原子性、有序性、可見性的作用,為什么還要加volatile呢?
public class TMain { public static void main(String[] args){ TestStream ts1 = TestSingleton.getInstance(); ts1.setName("jason"); TestStream ts2 = TestSingleton.getInstance(); ts2.setName("0539"); ts1.printInfo(); ts2.printInfo(); if(ts1 == ts2){ System.out.println("創建的是同一個實例"); }else{ System.out.println("創建的不是同一個實例"); } } }
運行結果:
the name is 0539 the name is 0539 創建的是同一個實例
結論:由結果可以得知單例模式為一個面向對象的應用程序提供了對象惟一的訪問點,不管它實現何種功能,整個應用程序都會同享一個實例對象。
對於單例模式的幾種實現方式,知道餓漢式和懶漢式的區別,線程安全,資源加載的時機,還有懶漢式為了實現線程安全的3種方式的細微差別。
優點:
(1)由於單例模式在內存中只有一個實例,減少了內存開支,特別是一個對象需要頻繁地創建、銷毀時,而且創建或銷毀時性能又無法優化,單例模式的優勢就非常明顯。
(2)由於單例模式只生成一個實例,所以減少了系統的性能開銷,當一個對象的產生需要比較多的資源時,比如讀取配置、產生其他依賴對象時,則可以通過在應用啟動時直接產生一個單例對象,然后用永久駐留內存的方式來解決。
(3)單例模式可以避免對資源的多重占用,例如一個寫文件操作,由於只有一個實例存在內存中,避免對同一個資源文件的同時寫操作。
(4)單例模式可以在系統設置全局的訪問點,優化和共享資源訪問,例如,可以設計一個單例類,負責所有數據表的映射處理。
缺點:
(1)單例模式一般沒有接口,擴展很困難,若要擴展,除了修改代碼基本上沒有第二種途徑可以實現。
(2)單例對象如果持有Context,那么很容易引發內存泄露,此時需要注意傳給單例對象的Context最好是Application Context。
ending...
參考博文:
https://www.runoob.com/design-pattern/singleton-pattern.html
https://www.cnblogs.com/crazy-wang-android/p/9054771.html