刷題總結
1,count數組
#include <iostream>
#include <unordered_map>
using namespace std;
// 輸入: 11223344455
// 輸出:{1:2, 2: 2, 3: 2, 4: 3, 5: 1}
void printNums(vector<int> nums) {
for(int i = 0; i < nums.size(); i++) {
cout << nums[i] << '\t';
}
}
vector<pair<int,int>> analysis(vector<int> nums) {
unordered_map<int, int> mp;
for(int i = 0; i < nums.size(); i++) {
if(mp.find(nums[i]) == mp.end()) {
mp.insert(pair(nums[i], 1));
} else {
mp[nums[i]] = mp.find(nums[i])->second + 1;
}
}
vector<pair<int, int>> result(mp.begin(), mp.end());
sort(result.begin(), result.end(), [](pair<int,int>&a, pair<int, int>&b) {
return a.second < b.second;
});
return result;
}
void printPair(vector<pair<int, int>> &nums) {
for(int i = 0; i < nums.size(); i++) {
cout << nums[i].first << ": " << nums[i].second << "\t";
}
}
int main() {
vector<int> nums = {7, 7, 2, 2, 3, 3, 4, 4 , 4, 5, 5};
// printNums(nums);
vector<pair<int, int>> result = analysis(nums);
printPair(result);
}
2, leetcode 1. 兩數之和
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> mp = new HashMap<>();
for(int i = 0; i < nums.length; i++) {
if(mp.containsKey(target - nums[i])) {
return new int[] {i, mp.get(target-nums[i])};
}
mp.put(nums[i], i);
}
return new int[2];
}
}
3,leetcode 4.尋找兩個有序數組的中位數
解法一:
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
// 合並兩個數組
ArrayList<Integer> array = new ArrayList<>();
int i = 0, j = 0;
while(i < nums1.length || j < nums2.length) {
if(i < nums1.length && j < nums2.length && nums1[i] < nums2[j]) {
array.add(nums1[i++]);
} else if(j < nums2.length && i < nums1.length && nums1[i] >= nums2[j]) {
array.add(nums2[j++]);
}else if (j < nums2.length) {
array.add(nums2[j++]);
} else if (i < nums1.length) {
array.add(nums1[i++]);
}
}
int totalLength = nums1.length + nums2.length;
int middle = (totalLength - 1) / 2;
if(totalLength % 2 == 0) {
return (array.get(middle) + array.get(middle+1) )/ 2.0;
} else {
return array.get(middle);
}
}
}
解法二:
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
if(m > n) {
return findMedianSortedArrays(nums2, nums1);
}
int c1 = 0, c2 = 0, lo = 0, hi = 2*m, LMAX1 = 0, LMAX2 = 0, RMIN1 = 0, RMIN2 = 0;
while(lo <= hi) {
c1 = (lo + hi) / 2;
c2 = m + n - c1;
LMAX1 = (c1 == 0) ? Integer.MIN_VALUE : nums1[(c1-1)/2];
LMAX2 = (c2 == 0) ? Integer.MIN_VALUE : nums2[(c2-1)/2];
RMIN1 = (c1 == 2*m) ? Integer.MAX_VALUE : nums1[c1/2];
RMIN2 = (c2 == 2*n) ? Integer.MAX_VALUE : nums2[c2/2];
if(LMAX1 > RMIN2) {
hi = c1 - 1;
} else if(LMAX2 > RMIN1) {
lo = c1 + 1;
} else {
break;
}
}
return (Math.max(LMAX1, LMAX2) + Math.min(RMIN1, RMIN2)) / 2.0;
}
}
4,leetcode 11.盛水最多的容器
解法一(暴力)
class Solution {
public int maxArea(int[] height) {
int max = Integer.MIN_VALUE;
int len = height.length;
int tmp = 0;
for(int i = 0; i < len - 1; i++) {
for (int j = i + 1; j < len; j++) {
tmp = (j - i)*(Math.min(height[i], height[j]));
if(tmp > max) {
max = tmp;
}
}
}
return max;
}
}
解法二(雙指針)
class Solution {
public int maxArea(int[] height) {
int res = Integer.MIN_VALUE;
int i = 0, j = height.length - 1;
while(i < j) {
if(height[i] < height[j]){
res = Math.max(res, height[i]*(j - i));
i++;
} else {
res = Math.max(res, height[j]*(j - i));
j--;
}
}
return res;
}
}
5, leetcode 15. 三數之和
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> result = new ArrayList();
int len = nums.length;
if(len < 3) return result;
Arrays.sort(nums);
for(int i = 0; i < len; i++) {
if(nums[i] > 0) break;
if(i > 0 && nums[i] == nums[i-1]) continue;
int L = i+1, R = len - 1;
while(L < R) {
int sum = nums[i] + nums[L] + nums[R];
if(sum == 0) {
result.add(Arrays.asList(nums[i], nums[L], nums[R]));
while(L < R && nums[L] == nums[L+1]) L++;
while(L < R && nums[R] == nums[R-1]) R--;
L++;
R--;
}
if(sum > 0) R--;
if(sum < 0) L++;
}
}
return result;
}
}
6, leetcode 16. 最接近三數之和
class Solution {
public int threeSumClosest(int[] nums, int target) {
int len = nums.length;
if(len < 3) return 0;
int result = nums[0] + nums[1] + nums[2];
Arrays.sort(nums);
for(int i = 0; i < len; i++) {
int L = i + 1;
int R = len - 1;
while(L < R) {
int sum = nums[i] + nums[L] + nums[R];
result = Math.abs(result - target) > Math.abs(sum - target) ? sum : result;
if(sum > target) {
R--;
}else if(sum < target) {
L++;
}else {
return target;
}
}
}
return result;
}
}
7, leetcode 18. 四數之和
class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
List<List<Integer>> result = new ArrayList();
int len = nums.length;
if(len < 4) return result;
Arrays.sort(nums);
for(int i = 0; i <= len - 4; i++) {
if(i > 0 && nums[i] == nums[i-1]) continue;
for(int j = i+1; j <= len - 3; j++) {
if(j > i+1 && nums[j] == nums[j-1]) continue;
int l = j+1, r = len - 1;
while(l < r) {
int sum = nums[i] + nums[j] + nums[l] + nums[r];
if(sum > target) {
r--;
}else if(sum < target) {
l++;
}else {
result.add(Arrays.asList(nums[i], nums[j], nums[l], nums[r]));
while(nums[l]==nums[l+1]) l++;
while(nums[r] == nums[r-1]) r--;
l++;
r--;
}
}
}
}
return result;
}
}
8. leetcode 26. 刪除排序數組中的重復項
解法一:(暴力移動法)
class Solution {
public int removeDuplicates(int[] nums) {
//判斷重復 記錄位置 刪除
int end = nums.length, i = 0;
while(i < end) {
if(i > 0 && nums[i] == nums[i-1]) {
//移動
for(int j = i+1; j < end; j++) {
nums[j-1] = nums[j];
}
end--;
}else {
i++;
}
}
return end;
}
}
解法二:(雙指針法)
class Solution {
public int removeDuplicates(int[] nums) {
int len = nums.length;
if(len == 0) return 0;
else if(len == 1) return 1;
else {
int i = 0;
for(int j = 1; j < len; j++) {
if(nums[i] != nums[j]) {
i++;
nums[i] = nums[j];
}
}
return i+1;
}
}
}
9. leetcode 3. 無重復字符的最長字串
解法一:
class Solution {
public int lengthOfLongestSubstring(String s) {
int len = s.length();
int i = 0;
int result = 0;
while(i < len) {
Set<String> set= new HashSet();
int j = 0;
for(j = i; j < len; j++) {
if(!set.contains(s.charAt(j)+"")) {
result = Math.max(result, j-i+1);
}else {
break;
}
set.add(s.charAt(j)+"");
}
i++;
}
return result;
}
}
解法二:(滑動窗口)
class Solution {
public int lengthOfLongestSubstring(String s) {
int LeftIndex = 0;
int result = 0;
for(int j = 0; j < s.length(); j++) {
for(int CurIndex = LeftIndex; CurIndex < j; CurIndex++) {
if(s.charAt(CurIndex) == s.charAt(j)) {
result = Math.max(result, j - LeftIndex);
LeftIndex = CurIndex + 1;
break;
}
}
}
return Math.max(s.length()-LeftIndex, result);
}
}
10. leetcode 27. 移除元素
解法一:
class Solution {
public int removeElement(int[] nums, int val) {
int i = 0;
for(int j = 0; j < nums.length; j++) {
if(nums[j] != val) {
nums[i] = nums[j];
i++;
}
}
return i;
}
}
解法二:
class Solution {
public int removeElement(int[] nums, int val) {
int len = nums.length;
int i = 0;
while(i < len) {
if(nums[i] == val) {
nums[i] = nums[len-1];
len--;
}else {
i++;
}
}
return len;
}
}
11. leetcode 6. Z字形變換
解法一:
class Solution {
public String convert(String s, int numRows) {
int len = s.length();
//根據s的長度 和numRows來分配初始數組的大小
StringBuilder sb = new StringBuilder();
if(len == 0) return sb.toString();
if(numRows == 1) return s;
int numCols = (len / (2*numRows - 2) + 1) * (numRows-1);
char[][] result = new char[numRows][numCols];
int i = 0, row = 0, col = 0;
while(i < len) {
for(int j = 0; j < numRows && i < len; j++) {
result[j][col] = s.charAt(i++);
}
col++;
for(int j = numRows-2; j >= 1 && i < len; j--) {
result[j][col++] = s.charAt(i++);
}
}
for(i = 0; i < result.length; i++) {
for(int j = 0; j < result[0].length; j++) {
if(result[i][j] != '\0') {
sb.append(result[i][j]);
}
}
}
return sb.toString();
}
}
解法二:
class Solution {
public String convert(String s, int numRows) {
int len = s.length();
numRows = Math.min(numRows, len);
if(numRows == 1) return s;
//構造stringbuilder
List<StringBuilder> sb = new ArrayList<>();
for(int i = 0; i < numRows; i++) {
sb.add(new StringBuilder());
}
boolean goDown = false;
int row = 0;
for(int i = 0; i < len; i++) {
sb.get(row).append(s.charAt(i));
if(row == 0 || row == numRows - 1) goDown = !goDown;
row += goDown ? 1 : -1;
}
StringBuilder res = new StringBuilder();
for(int i = 0; i < sb.size(); i++) {
res.append(sb.get(i));
}
return res.toString();
}
}
12. leetcode 5. 最長回文子串
解法一:(暴力)
class Solution {
public String longestPalindrome(String s) {
if(s.length() < 2) return s;
String res = s.substring(0, 1);
int maxLen = 1;
for(int i = 0; i < s.length() - 1; i++) {
for(int j = i + 1; j < s.length(); j++) {
if(j-i+1 > maxLen && valid(i, j, s)) {
maxLen = j - i + 1;
res = s.substring(i, j+1);
}
}
}
return res;
}
public boolean valid(int i, int j, String s) {
char[] ss = s.toCharArray();
while(i <= j) {
if(ss[i++] != ss[j--]) {
return false;
}
}
return true;
}
}
解法二:(中心擴散法)
class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if(len < 2) return s;
String res = s.substring(0, 1);
int maxLen = 1;
for(int i = 0; i < len-1; i++) {
String s1 = centerS(s, i, i);
String s2 = centerS(s, i, i+1);
String maxS = s1.length() > s2.length() ? s1 : s2;
if(maxS.length() > maxLen) {
maxLen = maxS.length();
res = maxS;
}
}
return res;
}
public String centerS(String s, int l, int r) {
int len = s.length();
while(l >= 0 && r < len) {
if(s.charAt(l) == s.charAt(r)) {
l--;
r++;
} else {
break;
}
}
return s.substring(l+1, r);
}
}
解法三:(動態規划)
class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if(len < 2) return s;
boolean[][] dp = new boolean[len][len];
String res = s.substring(0, 1);
int maxLen = 1;
for(int r = 1; r < len; r++) {
for(int l = 0; l < r ; l++) {
if(s.charAt(l) == s.charAt(r) && (r - l <= 2 || dp[l+1][r-1])) {
dp[l][r] = true;
if(r - l + 1 > maxLen) {
maxLen = r - l + 1;
res = s.substring(l, r+1);
}
}
}
}
return res;
}
}
13. leetcode 102. 二叉樹的層次遍歷
解法一:(遞歸)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public static List<List<Integer>> res;
public List<List<Integer>> levelOrder(TreeNode root) {
res = new ArrayList<>();
if(root == null) return res;
helper(root, 0);
return res;
}
public void helper(TreeNode root, int level) {
if(res.size() == level) {
res.add(new ArrayList());
}
res.get(level).add(root.val);
if(root.left != null) {
helper(root.left, level+1);
}
if(root.right != null) {
helper(root.right, level+1);
}
}
}
解法二:(迭代)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null) return res;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()) {
int _size = queue.size();
List<Integer> tmp = new ArrayList<>();
for(int i = 0; i < _size; i++) {
TreeNode node = queue.remove();
tmp.add(node.val);
if(node.left != null) {
queue.offer(node.left);
}
if(node.right != null) {
queue.offer(node.right);
}
}
res.add(tmp);
}
return res;
}
}
14. leetcode 103. 二叉樹的鋸齒形層次遍歷
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null) return res;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()) {
int _size = queue.size();
List<Integer> tmp = new ArrayList<>();
for(int i = 0; i < _size; i++) {
TreeNode node = queue.remove();
tmp.add(node.val);
if(node.left != null){
queue.offer(node.left);
}
if(node.right != null) {
queue.offer(node.right);
}
}
if(res.size()%2 == 0) {
res.add(tmp);
} else {
Collections.reverse(tmp);
res.add(tmp);
}
}
return res;
}
}
15, leetcode 100.相同的樹
解法一:(遞歸)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null && q == null) return true;
else if(p == null || q == null) return false;
else {
if(p.val != q.val) return false;
}
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
}
16, leetcode 96. 不同的二叉搜索樹
class Solution {
public int numTrees(int n) {
//動態規划 , 轉移函數通過找規律
//dp[i] += dp[i-1]*dp[n-i]
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i < n+1; i++) {
for(int j = 1; j <= i; j++) {
dp[i] += dp[j-1]*dp[i-j];
}
}
return dp[n];
}
}
17, leetcode 8. 字符串轉整數(atoi)
解法一(發生越界):
class Solution {
public int myAtoi(String str) {
int len = str.length();
if(len == 0) return 0;
int start = findFirst(str);
if(start == len) return 0;
if(str.charAt(start) == '+') {
return cal(str, start+1);
} else if (str.charAt(start) == '-') {
return 0 - cal(str, start+1);
} else {
return cal(str, start);
}
}
public int cal(String str, int start) {
int res = 0;
int len = str.length();
for(int i = start; i < len; i++) {
char c = str.charAt(i);
if(isNum(c)) {
res += (c - '0');
res *= 10;
} else {
break;
}
}
return res/10;
}
public int findFirst(String str) {
int len = str.length();
int i = 0;
while(i < len) {
if(str.charAt(i) == '+' || str.charAt(i) == '-' || (str.charAt(i) >= '0' && str.charAt(i) <= '9')) {
return i;
} else if (str.charAt(i) != ' ') {
return len;
}
i++;
}
return i;
}
public boolean isNum(char c) {
if(c >= '0' && c <= '9') {
return true;
}
return false;
}
}
改進:
class Solution {
public boolean flag = true;
public int myAtoi(String str) {
int len = str.length();
if(len == 0) return 0;
int start = findFirst(str);
if(start == len) return 0;
return cal(str, start);
}
public int cal(String str, int start) {
int res = 0;
int len = str.length();
for(int i = start; i < len; i++) {
char c = str.charAt(i);
if(isNum(c)) {
res = res*10 + (c - '0');
if( flag && i+1 < len && isNum(str.charAt(i+1)) &&( res > Integer.MAX_VALUE / 10 ||res == Integer.MAX_VALUE/10 && str.charAt(i+1) - '0' > Integer.MAX_VALUE%10)) {
return Integer.MAX_VALUE ;
}
if(!flag && i+1 < len && isNum(str.charAt(i+1)) &&( -res < Integer.MIN_VALUE / 10 ||-res == Integer.MIN_VALUE/10 && -(str.charAt(i+1) - '0') < Integer.MIN_VALUE%10)) {
return Integer.MIN_VALUE ;
}
} else {
break;
}
}
return flag ? res : res*(-1);
}
public int findFirst(String str) {
int len = str.length();
int i = 0;
while(i < len) {
if(str.charAt(i) == '+') {
flag = true;
return i+1;
}else if(str.charAt(i) == '-') {
flag = false;
return i+1;
}else if (str.charAt(i) >= '0' && str.charAt(i) <= '9') {
return i;
} else if (str.charAt(i) != ' ') {
return len;
}
i++;
}
return i;
}
public boolean isNum(char c) {
if(c >= '0' && c <= '9') {
return true;
}
return false;
}
}
解法二:(正則表達式):
class Solution(object):
def myAtoi(self, str):
"""
:type str: str
:rtype: int
"""
return max(min(int(*re.findall(r'^[\+|\-]?\d+', str.lstrip())), 2**31-1), -2**31)
這道題硬磕了一個小時,邊界情況還是含糊不清,需要集中注意力。加油!!
18, leetcode 13.羅馬數字轉整數
class Solution {
public int romanToInt(String s) {
int len = s.length();
if(len == 0) return 0;
int i = 0;
int res = 0;
while(i < len) {
if(i < len && s.charAt(i) == 'M') {
res += 1000;
i++;
}
if(i < len && s.charAt(i) == 'D') {
res += 500;
i++;
}
if(i < len && s.charAt(i) == 'C' && (i+1 < len &&!(s.charAt(i+1) == 'D' || s.charAt(i+1) == 'M') || i+1 >= len)) {
res += 100;
i++;
} else if (i < len && s.charAt(i) == 'C' && i+1 < len && (s.charAt(i+1) == 'D')) {
res += 400;
i += 2;
} else if(i < len && s.charAt(i) == 'C' && i+1 < len && (s.charAt(i+1) == 'M')) {
res += 900;
i += 2;
}
if(i < len && s.charAt(i) == 'L') {
res += 50;
i++;
}
if (i < len && s.charAt(i) == 'X' && (i+1 < len &&!(s.charAt(i+1) == 'L' || s.charAt(i+1) == 'C') || i+1 >= len)) {
res += 10;
i++;
} else if (i < len && s.charAt(i) == 'X' && i+1 < len && s.charAt(i+1) == 'L') {
res += 40;
i += 2;
} else if(i < len && s.charAt(i) == 'X' && i+1 < len &&(s.charAt(i+1) == 'C')) {
res += 90;
i += 2;
}
if(i < len && s.charAt(i) == 'V') {
res += 5;
i++;
}
if(i < len && s.charAt(i) == 'I' &&( i+1 < len &&!(s.charAt(i+1) == 'V' || s.charAt(i+1) == 'X') || i+1 >= len)) {
res += 1;
i++;
} else if(i < len && s.charAt(i) == 'I' && i+1 < len && s.charAt(i+1) == 'V') {
res += 4;
i += 2;
} else if(i < len && s.charAt(i) == 'I' && i+1 < len && s.charAt(i+1) == 'X') {
res += 9;
i += 2;
}
}
return res;
}
}
這個解題方法很恐怖,首先邊界情況太多,還有很多重復的代碼塊,不好維護。全程if else,寫的也很耽誤時間,特別需要優化。
解法二:其實在寫以上題解過程中,也是想到要不要將值存到hashmap里面,這樣直接讀取就好了,無奈懶得更進一步去思考IV這種情況。就是直接去hashmap里面取值嘛,取不到就取單個字符的。
class Solution {
public int romanToInt(String s) {
Map<String, Integer> map = new HashMap<>();
map.put("I", 1);
map.put("V", 5);
map.put("X", 10);
map.put("L", 50);
map.put("C", 100);
map.put("D", 500);
map.put("M", 1000);
map.put("IV", 4);
map.put("IX", 9);
map.put("XL", 40);
map.put("XC", 90);
map.put("CD", 400);
map.put("CM", 900);
int len = s.length();
if(len == 0) return 0;
int i = 0;
int res = 0;
while(i < len) {
if(i < len && i+2 <= len && map.containsKey(s.substring(i, i+2))) {
res += map.get(s.substring(i, i+2));
i += 2;
}else if(i < len && map.containsKey(s.substring(i, i+1))) {
res += map.get(s.substring(i, i+1));
i +=1;
}
}
return res;
}
}
19,leetcode 14. 最長公共前綴
class Solution {
public String longestCommonPrefix(String[] strs) {
int index = 0;
int len = strs.length;
if(len < 1 ||(len >= 0 && strs[0].length() == 0)) return "";
StringBuilder sb = new StringBuilder();
boolean flag = true;
while(flag && index < strs[0].length()) {
char c = strs[0].charAt(index);
for(int i = 1; i < len; i++) {
if(index < strs[i].length() && strs[i].charAt(index) != c || index >= strs[i].length()) {
flag = false;
break;
}
}
if (flag) sb.append(strs[0].charAt(index));
index++;
}
return sb.toString();
}
}
20, leetcode 12.整數轉羅馬數字
class Solution {
public String intToRoman(int num) {
String[] romans = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"};
int[] nums = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1};
if(num <= 0) return "";
StringBuilder sb = new StringBuilder();
while(num > 0) {
for(int i = 0; i < 13; i++) {
if(num >= nums[i]) {
num -= nums[i];
sb.append(romans[i]);
break;
}
}
}
return sb.toString();
}
}
21, leetcode 17. 電話號碼的字母組合
class Solution {
public List<String> letterCombinations(String digits) {
StringBuilder sb = new StringBuilder();
int len = digits.length();
if(len == 0) return result;
backtrack("", digits);
return result;
}
public List<String> result = new ArrayList<>();
String[] mm = {"abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
public void backtrack(String combinations, String digits) {
if(digits.length() == 0) {
result.add(combinations);
return;
}else {
String ss = mm[digits.charAt(0)-'2'];
for(int i = 0; i < ss.length(); i++) {
backtrack(combinations+ss.substring(i, i+1), digits.substring(1));
}
}
}
}
22, leetcode 401. 二進制手表
class Solution {
public List<String> readBinaryWatch(int num) {
if(num == 0) {
result.add("0:00");
return result;
}
if(num > 0 && num <= 10) {
backtrack(0, num);
}
return result;
}
public List<String> result = new ArrayList<>();
public int[] time = {480, 240, 120, 60, 32, 16, 8, 4, 2, 1};
public boolean[] visited = new boolean[10];
public void backtrack(int combinations, int nums) {
if(nums == 0) {
int h = combinations / 60;
int s = combinations % 60;
String tmp = "";
if(s < 10) {
tmp = String.format("%d:0%d", h, s);
} else {
tmp = String.format("%d:%d", h, s);
}
result.add(tmp);
return;
} else {
for(int i = 0; i < 10; i++) {
if(!visited[i]) {
combinations += time[i];
visited[i] = true;
backtrack(combinations, nums-1);
combinations -= time[i];
visited[i] = false;
}
}
}
}
}
以上的解法不對,是因為,小時只能重用一次,分鍾只能重用一次,而不是小時和分鍾加起來只能重用一次。//不是, 每一次只能使用一個元素。
class Solution {
public List<String> readBinaryWatch(int num) {
if(num == 0) {
result.add("0:00");
return result;
}
if(num > 0 && num <= 10) {
backtrack(0, num, 0);
}
return result;
}
public List<String> result = new ArrayList<>();
public int[] time = {480, 240, 120, 60, 32, 16, 8, 4, 2, 1};
public boolean[] visited = new boolean[10];
public void backtrack(int combinations, int nums, int start) {
int h = combinations / 60;
int s = combinations % 60;
if(nums == 0) {
String tmp = "";
if(s < 10) {
tmp = String.format("%d:0%d", h, s);
} else {
tmp = String.format("%d:%d", h, s);
}
result.add(tmp);
return;
} else {
for(int i = start; i < 10; i++) {
if(i < 4 ) {
combinations += time[i];
if(h + time[i]/60 < 12)
backtrack(combinations, nums-1, i+1);
combinations -= time[i];
}
else {
combinations += time[i];
if(s + time[i] < 60)
backtrack(combinations, nums-1, i+1);
combinations -= time[i];
}
}
}
}
}
23, leetcode 784. 字母大小寫全排列
class Solution {
public List<String> letterCasePermutation(String S) {
backtrack("", 0, S);
return result;
}
public List<String> result = new ArrayList<>();
public void backtrack(String combinations, int start, String nextString) {
if(nextString.length() == start) {
result.add(combinations);
return;
} else {
for(int i = start; i < nextString.length(); i++) {
String tmp = nextString.substring(i, i+1);
String tt = transfer(tmp);
backtrack(combinations+tt, start+1, nextString);
}
}
}
public String transfer(String tt) {
String tmp = tt;
if(tt.length() != 0) {
char c = tt.charAt(0);
if(Character.isUpperCase(c)) {
tmp = tt.toLowerCase();
} else if (Character.isLowerCase(c)) {
tmp = tt.toUpperCase();
}
}
return tmp;
}
}
不知道以上的思路是什么玩意,到現在都沒想明白
得出了一下的輸出
輸入:"a1b2"
輸出:["A1B2","A122","ABB2","AB22","A2B2","A222","11B2","1122","1BB2","1B22","12B2","1222","B1B2","B122","BBB2","BB22","B2B2","B222","21B2","2122","2BB2","2B22","22B2","2222"]
預期結果:
["a1b2","a1B2","A1b2","A1B2"]
class Solution {
public List<String> letterCasePermutation(String S) {
Stack<Character> stack = new Stack<>();
dfs(S, 0, stack);
return res;
}
public List<String> res = new ArrayList<>();
public void dfs(String S, int index, Stack<Character> stack) {
if(S.length() == index) {
StringBuilder sb = new StringBuilder();
for(int i = 0; i < index; i++) {
sb.append(stack.get(i));
}
res.add(sb.toString());
return;
}
stack.add(S.charAt(index));
dfs(S, index+1, stack);
stack.pop();
if(Character.isUpperCase(S.charAt(index))) {
stack.add(S.substring(index, index+1).toLowerCase().charAt(0));
dfs(S, index+1, stack);
stack.pop();
} else if(Character.isLowerCase(S.charAt(index))) {
stack.add(S.substring(index, index+1).toUpperCase().charAt(0));
dfs(S, index+1, stack);
stack.pop();
}
}
}
遞回溯算法框架:
非遞歸:
1: int a[n],i;
2: 初始化數組a[];
3: i = 1;
4: while (i>0(有路可走) and (未達到目標)) // 還未回溯到頭
5: {
6: if(i > n) // 搜索到葉結點
7: {
8: 搜索到一個解,輸出;
9: }
10: else // 處理第i個元素
11: {
12: a[i]第一個可能的值;
13: while(a[i]在不滿足約束條件且在搜索空間內)
14: {
15: a[i]下一個可能的值;
16: }
17: if(a[i]在搜索空間內)
18: {
19: 標識占用的資源;
20: i = i+1; // 擴展下一個結點
21: }
22: else
23: {
24: 清理所占的狀態空間; // 回溯
25: i = i –1;
26: }
27: }
遞歸:
1: int a[n];
2: try(int i)
3: {
4: if(i>n)
5: 輸出結果;
6: else
7: {
8: for(j = 下界; j <= 上界; j=j+1) // 枚舉i所有可能的路徑
9: {
10: if(fun(j)) // 滿足限界函數和約束條件
11: {
12: a[i] = j;
13: ... // 其他操作
14: try(i+1);
15: 回溯前的清理工作(如a[i]置空值等);
16: }
17: }
18: }
19: }
24. leetcode 78. 子集
class Solution {
public List<List<Integer>> subsets(int[] nums) {
Stack<Integer> stack = new Stack();
backtrack(nums, 0, stack);
return res;
}
public List<List<Integer>> res = new ArrayList();
public void backtrack(int[] nums, int start, Stack<Integer> stack) {
List<Integer> list = new ArrayList();
for(int j = 0; j < stack.size(); j++) {
list.add(stack.get(j));
}
res.add(list);
if(start == nums.length) {
return;
} else {
for(int i = start; i < nums.length; i++) {
stack.add(nums[i]);
backtrack(nums, i+1, stack);
stack.pop();
}
}
}
}
25, leetcode 51. N皇后
class Solution {
public List<List<String>> solveNQueens(int n) {
Stack<Integer> stack = new Stack();
boolean[] cols = new boolean[n];
boolean[] master = new boolean[2*n];
boolean[] slave = new boolean[2*n];
if(n == 0) return res;
backtrack(n, 0, stack, cols, master, slave);
return res;
}
public List<List<String>> res = new ArrayList();
public void backtrack(int n, int row, Stack<Integer> stack, boolean[] cols, boolean[] master, boolean[] slave) {
if(row == n) {
List<String> tmp = convert(stack, n);
res.add(tmp);
return;
} else {
for(int i = 0; i < n; i++) {
if(!cols[i] && !master[row+i] && !slave[row-i+n-1]) {
stack.add(i);
cols[i] = true;
master[row+i] = true;
slave[row-i+n-1] = true;
backtrack(n, row+1, stack, cols, master, slave);
stack.pop();
cols[i] = false;
master[row+i] = false;
slave[row-i+n-1] = false;
}
}
}
}
public List<String> convert(Stack<Integer> stack, int n) {
List<String> result = new ArrayList();
for(int i = 0; i < n; i++) {
int k = stack.get(i);
StringBuilder sb = new StringBuilder();
for(int j = 0; j < n; j++) {
if(j == k) {
sb.append('Q');
} else {
sb.append('.');
}
}
result.add(sb.toString());
}
return result;
}
}
26. leetcode 22.括號生成
class Solution {
public List<String> generateParenthesis(int n) {
if(n == 0) return result;
Stack<Character> stack = new Stack();
backtrack(n, 0, 0, stack);
return result;
}
public List<String> result = new ArrayList();
public void backtrack(int n, int left, int right, Stack<Character> stack) {
if(left == right && right == n) {
StringBuilder sb = new StringBuilder();
for(int i = 0; i < stack.size(); i++) {
sb.append(stack.get(i));
}
result.add(sb.toString());
} else {
if(left == right && left < n) {
stack.add('(');
backtrack(n, left+1, right, stack);
stack.pop();
} else if (left > right && left < n) {
stack.add('(');
backtrack(n, left+1, right, stack);
stack.pop();
stack.add(')');
backtrack(n, left, right+1, stack);
stack.pop();
} else if(left > right && left == n) {
stack.add(')');
backtrack(n, left, right+1, stack);
stack.pop();
}
}
}
}
解法二(動態規划)
class Solution {
public List<String> generateParenthesis(int n) {
List<String> result = new ArrayList();
List<List<String>> dp = new ArrayList();
dp.add(Arrays.asList(""));
dp.add(Arrays.asList("()"));
for(int i = 2; i <= n; i++) {
List<String> tmp = new ArrayList();
for(int j = 0; j < i; j++) {
List<String> p = dp.get(j);
List<String> q = dp.get(i - 1 - j);
for(String t1 : p) {
for(String t2 : q) {
String tt = "(" + t1 + ")" + t2;
tmp.add(tt);
}
}
}
dp.add(tmp);
}
return dp.get(n);
}
}
27, leetcode 39. 組合總和
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
backtrack(candidates, target, new Stack<Integer>(), 0, 0);
return result;
}
public List<List<Integer>> result = new ArrayList();
public void backtrack(int[] candidates, int target, Stack<Integer> stack, int sum, int start) {
if(sum == target) {
List<Integer> tmp = new ArrayList();
for(int i = 0; i < stack.size(); i++) {
tmp.add(stack.get(i));
}
result.add(tmp);
} else {
if(sum < target) {
for(int i = start; i < candidates.length; i++) {
if(sum + candidates[i] <= target) {
stack.add(candidates[i]);
backtrack(candidates, target, stack, sum+candidates[i], i);
stack.pop();
}
}
}
}
}
}
28, leetcode 95. 不同的二叉搜索樹II
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<TreeNode> generateTrees(int n) {
if(n == 0) return res;
return backtrack(1, n);
}
List<TreeNode> res = new ArrayList();
public List<TreeNode> backtrack(int start, int end) {
List<TreeNode> result = new ArrayList();
if(start > end) {
result.add(null);
return result;
}
if(start == end) {
TreeNode node = new TreeNode(start);
result.add(node);
return result;
}
for(int i = start; i <= end; i++) {
List<TreeNode> leftNode = backtrack(start, i-1);
List<TreeNode> rightNode = backtrack(i+1, end);
for(TreeNode left : leftNode) {
for(TreeNode right : rightNode) {
TreeNode node = new TreeNode(i);
node.left = left;
node.right = right;
result.add(node);
}
}
}
return result;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<TreeNode> generateTrees(int n) {
List<List<TreeNode>> dp = new ArrayList();
List<TreeNode> tt = new ArrayList();
tt.add(null);
dp.add(tt);
if(n == 0) return new ArrayList();
for(int i = 1; i <= n; i++) {
List<TreeNode> tmp = new ArrayList();
for(int j = 1; j <= i; j++) {
List<TreeNode> left = dp.get(j-1);
List<TreeNode> right = dp.get(i-j);
for(TreeNode l : left) {
for(TreeNode r : right) {
TreeNode node = new TreeNode(j);
node.left = l;
node.right = clone(r, j);
tmp.add(node);
}
}
}
dp.add(tmp);
}
return dp.get(n);
}
public TreeNode clone(TreeNode node, int offset) {
if(node == null) {
return null;
}
TreeNode n = new TreeNode(node.val+offset);
n.left = clone(node.left, offset);
n.right = clone(node.right, offset);
return n;
}
}
29, leetcode 98.驗證二叉搜索樹
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
return isBST(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean isBST(TreeNode root, long minVal, long maxVal) {
if(root == null) {
return true;
}
if(root.val <= minVal || root.val >= maxVal) {
return false;
}
return isBST(root.left, minVal, root.val)&&isBST(root.right, root.val, maxVal);
}
}
這里需要注意最大值最小值的類型,需要用Long 或者Double來表示,Integer不行。比如[Integer.MAX_VALUE]這個例子就會報錯。 這個解法不通用,雖然簡單。下面寫一個更常用的解法,采用中序遍歷來判斷BST
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
return isBST(root);
}
public TreeNode pre = null;
public boolean isBST(TreeNode root) {
if(root == null) return true;
if(!isBST(root.left)) {
return false;
}
if(pre != null && pre.val >= root.val) {
return false;
}
pre = root;
return isBST(root.right);
}
}
30, leetcode 104.二叉樹的最大深度
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if(root == null) return depth;
queue.add(root);
while(!queue.isEmpty()) {
int len = queue.size();
for(int i = 0; i < len ; i++) {
TreeNode tmp = queue.remove();
if(tmp.left != null) queue.offer(tmp.left);
if(tmp.right != null) queue.offer(tmp.right);
}
depth++;
}
return depth;
}
public int depth = 0;
public Queue<TreeNode> queue = new LinkedList();
}
方法二(遞歸):
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if(root == null) return 0;
int maxL = maxDepth(root.left);
int maxR = maxDepth(root.right);
return Math.max(maxL, maxR)+1;
}
}
31 leetcode 99. 恢復二叉樹
難點:
很難想到恢復的細節,主要是找到規律
記錄兩個節點,第一個節點是第一次前面節點大於后面節點,取前節點
第二個節點是第二次出現的前面節點大於后面節點,取后面節點。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public void recoverTree(TreeNode root) {
inOrder(root);
int tmp = first.val;
first.val = second.val;
second.val = tmp;
}
public TreeNode first = null;
public TreeNode pre = new TreeNode(Integer.MIN_VALUE);
public TreeNode second = null;
public void inOrder(TreeNode root) {
if(root == null) return;
inOrder(root.left);
if (first == null && pre != null && pre.val > root.val){
first = pre;
}
if(first != null && pre != null && pre.val > root.val) {
// int tmp = root.val;
// root.val = first.val;
// first.val = tmp;
// return;
second = root;
}
pre = root;
inOrder(root.right);
}
}
32. leetcode 105. 從前序與中序遍歷序列構造二叉樹
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
Map<Integer, Integer> map = new HashMap<>();
for(int i = 0; i < inorder.length; i++) {
map.put(inorder[i], i);
}
return buildTreeHelper(preorder, 0, preorder.length, inorder, 0, inorder.length, map);
}
public TreeNode buildTreeHelper(int[] preorder, int p_start, int p_end, int[] inorder, int i_start, int i_end, Map<Integer, Integer>map){
if(p_start == p_end) {
return null;
}
int root_val = preorder[p_start];
TreeNode root = new TreeNode(root_val);
int i_root = map.get(root_val);
int len = i_root - i_start;
root.left = buildTreeHelper(preorder, p_start+1, p_start+len+1, inorder, i_start, i_root, map);
root.right = buildTreeHelper(preorder, p_start+len+1, p_end, inorder, i_root+1, i_end, map);
return root;
}
}
33. leetcode 106. 從中序與后序遍歷序列構造二叉樹
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode buildTree(int[] inorder, int[] postorder) {
Map<Integer, Integer> map = new HashMap<>();
for(int i = 0; i < inorder.length; i++) {
map.put(inorder[i], i);
}
return buildTreeHelper(inorder, 0, inorder.length, postorder, 0, postorder.length, map);
}
public TreeNode buildTreeHelper(int[] inorder, int i_start, int i_end, int[] postorder, int p_start, int p_end, Map<Integer, Integer> map) {
if(i_start == i_end) {
return null;
}
int root_val = postorder[p_end-1];
TreeNode root = new TreeNode(root_val);
int index = map.get(root_val);
int len = index - i_start;
root.left = buildTreeHelper(inorder, i_start, index, postorder, p_start, p_start+len, map);
root.right = buildTreeHelper(inorder, index+1, i_end, postorder, p_start+len, p_end-1, map);
return root;
}
}
34. leetcode 107. 二叉樹的層次遍歷II
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if(root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()) {
List<Integer> tmp = new ArrayList<>();
int len = queue.size();
for(int i = 0; i < len; i++) {
TreeNode cur = queue.remove();
if(cur.left != null) queue.offer(cur.left);
if(cur.right != null) queue.offer(cur.right);
tmp.add(cur.val);
}
result.add(tmp);
}
Collections.reverse(result);
return result;
}
}
35. leetcode 24. 兩兩交換鏈表中的節點
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode swapPairs(ListNode head) {
ListNode tmp = null;
ListNode dummy = new ListNode(0);
dummy.next = head;
ListNode pre = head;
ListNode ppre = dummy;
while(pre != null) {
if(pre.next != null) {
tmp = pre.next.next;
ppre.next = pre.next;
pre.next.next = pre;
pre.next = tmp;
ppre = pre;
}
pre = pre.next;
}
return dummy.next;
}
}
36. leetcode 25. K個一組翻轉鏈表
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode reverseKGroup(ListNode head, int k) {
ListNode dummy = new ListNode(0);
dummy.next = head;
ListNode pre = dummy;
ListNode end = dummy;
while(end.next != null) {
for(int i = 0; i < k && end != null; i++) end = end.next;
if(end == null) break;
ListNode start = pre.next;
ListNode next = end.next;
end.next = null;
pre.next = reverse(start);
start.next = next;
pre = start;
end = start;
}
return dummy.next;
}
public ListNode reverse(ListNode head) {
ListNode pre = null;
ListNode node = head;
while(node != null) {
ListNode tmp = node.next;
node.next = pre;
pre = node;
node = tmp;
}
return pre;
}
}
這題寫的有點難受,主要是小bug太多,邏輯也不夠清晰。這道題是自己的弱項,需要多練習。
37. leetcode 61.旋轉鏈表
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode rotateRight(ListNode head, int k) {
if(k == 0) return head;
if(head == null) return head;
ListNode dummy = new ListNode(0);
dummy.next = head;
ListNode pre = dummy;
ListNode end = dummy;
dummy.next = findTailK(head, k, head);
return dummy.next;
}
public ListNode findTailK(ListNode head, int k, ListNode start) {
ListNode cur = head;
ListNode next = head;
int count = 0;
for(int i = 0; i < k && next != null; i++) {
next = next.next;
count++;
}
if(next == null) return findTailK(head, k%count, start);
while(next.next != null) {
next = next.next;
cur = cur.next;
}
next.next = start;
ListNode result = cur.next;
cur.next = null;
return result;
}
}
38. leetcode 29.兩數相除
class Solution {
public int divide(int dividend, int divisor) {
int count = 0;
if(dividend == Integer.MIN_VALUE && divisor == -1) return Integer.MAX_VALUE;
if(divisor == 0) return 0;
if(divisor == 1) return dividend;
boolean sign = (dividend > 0) ^ (divisor > 0);
long s = Math.abs((long)divisor);
long d = Math.abs((long)dividend);
int result = 0;
for(int i = 31; i >= 0; i--) {
long tmp = d >> i;
result <<= 1;
if(tmp >= s) {
result += 1;
d -= s << i;
}
}
return sign ? -result : result;
}
}
這道題邊界情況很煩。一方面要考慮被除數負數溢出(絕對值時候用到),一方面又要考慮結果溢出。debug了好久。
39. leetcode 43.字符串相乘
class Solution {
public String multiply(String num1, String num2) {
int len1 = num1.length();
int len2 = num2.length();
if(num1.equals("0") || num2.equals("0")) return "0";
int[] result = new int[len1+len2];
for(int i = len1-1; i >= 0; i--) {
for(int j = len2-1; j >= 0; j--) {
int tmp = (result[i+j+1]) + (num1.charAt(i) - '0')*(num2.charAt(j) - '0');
result[i+j+1] = tmp%10;
result[i+j] += tmp/10;
}
}
StringBuilder res = new StringBuilder();
for(int i = 0; i < result.length; i++) {
if(result[i] != 0) {
for(int j = i; j < result.length; j++) {
res.append(result[j]);
}
break;
}
}
return res.toString();
}
}
40. leetcode 50. Pow(x, n)
class Solution {
public double myPow(double x, int n) {
if(n == 0) return 1.0;
if(n > 0) return powHelper(x, n);
if(n < 0) {
if(n == Integer.MIN_VALUE && x != 1.0 && x != -1.0) {
return 0.0;
}
return 1/powHelper(x, -n);
};
return 1.0;
}
public double powHelper(double x, int n) {
double res = 1;
while(n > 0) {
if((n&1) == 1) res *= x;
n >>= 1;
x *= x;
}
return res;
}
}
還是邊界情況很煩人。不過這題的思路很通用,利用二進制的拆解思路來做的,很棒了。
還有一種辦法是二分法。后面完善。
41. leetcode 60. 第k個排列
class Solution {
public String getPermutation(int n, int k) {
boolean[] visited = new boolean[n];
int[] nums = new int[n];
for(int i = 0; i < n; i++) {
nums[i] = i+1;
}
StringBuilder sb = new StringBuilder();
List<String> res = new ArrayList<>();
permutationCore(visited, nums, k, sb, n, res);
result = res.get(k-1);
return result;
}
public String result = "";
public void permutationCore(boolean[] visited, int[] nums, int k, StringBuilder str, int n, List<String> res) {
if(str.length() == n) {
res.add(str.toString());
return;
} else if(k < 0) {
return;
} else {
for(int i = 0; i < n; i++) {
if(!visited[i]) {
visited[i] = true;
permutationCore(visited, nums, k, str.append(nums[i]), n, res);
str.deleteCharAt(str.length()-1);
visited[i] = false;
}
}
}
}
}
執行用時 :909 ms, 在所有 java 提交中擊敗了5.44%的用戶
內存消耗 :103.2 MB, 在所有 java 提交中擊敗了11.35%的用戶
42. leetcode 67.二進制求和
class Solution {
public String addBinary(String a, String b) {
int len1 = a.length();
int len2 = b.length();
if(len1 < len2) return addBinary(b, a);
int[] result = new int[len1+1];
int index = len1 - 1;
int j = len2 - 1;
while(index >= 0) {
int tmp = j >= 0 ? (a.charAt(index) - '0') + (b.charAt(j) - '0') + result[index+1] : (a.charAt(index) - '0') + result[index+1];
result[index+1] = tmp%2;
result[index] += tmp/2;
index--;
j--;
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i < result.length; i++) {
if(i == 0 && result[i] == 0) continue;
sb.append(result[i]);
}
return sb.toString();
}
}
43. leetcode 69. x的平方根
class Solution {
public int mySqrt(int x) {
if(x == 1) return 1;
for(int i = 1; i <= x/2; i++) {
if(i*i <= x && (long)(i+1)*(i+1) > (long)x) {
return i;
}
}
return 0;
}
}
解法二(二分查找):
class Solution {
public int mySqrt(int x) {
long left = 0;
long right = x / 2 + 1;
while(left < right) {
long mid = (left + right+1) >> 1;
if((long)mid*mid > (long)x) {
right = mid-1;
} else {
left = mid;
}
}
return (int)left;
}
}
44. leetcode 168. Excel表列名稱
class Solution {
public String convertToTitle(int n) {
StringBuilder sb = new StringBuilder();
convertHelper(n, sb);
return sb.reverse().toString();
}
public void convertHelper(int n, StringBuilder res) {
if(n == 0) {
return;
} else {
res.append((char)('A' + (n-1)%26));
convertHelper((n-1)/26, res);
}
}
}
45. leetcode 66. 加一
class Solution {
public int[] plusOne(int[] digits) {
int len = digits.length;
int carry = 0;
int[] result = new int[len+1];
for(int i = len-1; i >= 0; i--) {
if(i == len - 1) {
result[i+1] = (digits[i] + carry + 1) % 10;
carry = (digits[i] + carry + 1) / 10;
} else {
result[i+1] = (digits[i] + carry) % 10;
carry = (digits[i] + carry) / 10;
}
}
if(carry == 1) {
result[0] = 1;
return result;
} else {
int[] res = new int[len];
for(int i = 0; i < len; i++) {
res[i] = result[i+1];
}
return res;
}
}
}
46. leetcode 77.組合
class Solution {
public List<List<Integer>> combine(int n, int k) {
Stack<Integer> stack = new Stack();
backtrack(0, n, k, stack, 0);
return result;
}
public List<List<Integer>> result = new ArrayList<>();
public void backtrack(int start, int n, int k, Stack<Integer> stack, int depth) {
if(depth == k) {
List<Integer> tmp = new ArrayList();
for(int i = 0; i < stack.size(); i++) {
tmp.add(stack.get(i));
}
result.add(tmp);
} else {
for(int i = start; i < n; i++) {
stack.add(i+1);
backtrack(i+1, n, k, stack, depth+1);
stack.pop();
}
}
}
}
47. leetcode 70.爬樓梯
動態規划特訓
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n];
dp[0] = 1;
if(n == 1) return dp[0];
dp[1] = 2;
for(int i = 2; i < n; i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n-1];
}
}
動態規划四步法:
- 問題拆解(找到問題之間的具體關系)
- 狀態定義(用自己的話定義狀態,很重要是dp[i] 還是dp_[ i ]__[ j ]_ )
- 遞推方程推導(選擇合適的數據結構表示對應的狀態)
- 實現(注意如何初始化,數組需要申請多大的空間)
方法二:(依然是動態規划,不過更節省了空間)
class Solution {
public int climbStairs(int n) {
int a = 1;
int b = 2;
int c = 0;
if(n == 1) return a;
if(n == 2) return b;
for(int i = 3; i <= n; i++) {
c = a + b;
a = b;
b = c;
}
return c;
}
}
48. leetcode 120.三角形最小路徑和
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int row = triangle.size();
int col = triangle.get(row-1).size();
int[][] dp = new int[row][col];
for(int i = 0; i < col; i++) {
dp[row-1][i] = triangle.get(row-1).get(i);
}
for(int i = col-2; i >= 0; i--) {
List<Integer> tmp = triangle.get(i);
for(int j = 0; j < tmp.size(); j++) {
dp[i][j] = Math.min(dp[i+1][j], dp[i+1][j+1]) + triangle.get(i).get(j);
}
}
return dp[0][0];
}
}
解法二(動態規划,但是節省動態規划申請的dp空間)
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int row = triangle.size();
int col = triangle.get(row-1).size();
int[] dp = new int[col];
for(int i = 0; i < col; i++) {
dp[i] = triangle.get(row-1).get(i);
}
for(int i = col-2; i >= 0; i--) {
List<Integer> tmp = triangle.get(i);
for(int j = 0; j < tmp.size(); j++) {
dp[j] = Math.min(dp[j], dp[j+1]) + triangle.get(i).get(j);
}
}
return dp[0];
}
}
將二維數組變為一維數組,原因是,數組狀態的更新不影響后續的更新操作
49. leetcode 53. 最大子序和
class Solution {
public int maxSubArray(int[] nums) {
//記憶化搜索
int len = nums.length;
int[] dp = new int[len+1];
dp[0] = 0;
int maxVal = Integer.MIN_VALUE;
for(int i = 0; i < len; i++) {
int tmp = dp[i] > 0 ? dp[i] + nums[i] : nums[i];
dp[i+1] = tmp;
if(dp[i+1] > maxVal) maxVal = dp[i+1];
}
return maxVal;
}
}
50. leetcode 62. 不同路徑
解法一:(常規動態規划)
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for(int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
解法二:(節省內存/線性動態規划)
這么做的原因還是因為前面狀態的變化不影響后面狀態的更新,所以可以壓縮為線性的空間。
51. leetcode 63. 不同路徑II
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
boolean flag = true;
for(int i = 0; i < n; i++) {
if(obstacleGrid[0][i] == 1) flag = false;
if(flag) {
dp[0][i] = 1;
}
}
flag = true;
for(int i = 0; i < m; i++) {
if(obstacleGrid[i][0] == 1) flag = false;
if(flag) {
dp[i][0] = 1;
}
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
52. leetcode 64. 最小路徑和
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m+1][n+1];
for(int i = 0; i < m+1; i++) {
dp[i][0] = Integer.MAX_VALUE;
}
for(int i = 0; i < n+1; i++) {
dp[0][i] = Integer.MAX_VALUE;
}
dp[1][1] = grid[0][0];
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(i == 0 && j == 0) continue;
dp[i+1][j+1] = Math.min(dp[i][j+1], dp[i+1][j]) + grid[i][j];
}
}
return dp[m][n];
}
}
53. leetcode 221. 最大正方形
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length;
if(m == 0) return 0;
int n = matrix[0].length;
int[][] dp = new int[m][n];
int maxVal = dp[0][0];
for(int i = 0; i < m; i++) {
dp[i][0] = matrix[i][0] == '1' ? 1 : 0;
if(dp[i][0] == 1) maxVal = 1;
}
for(int i = 0; i < n; i++) {
dp[0][i] = matrix[0][i] == '1' ? 1 : 0;
if(dp[0][i] == 1) maxVal = 1;
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++){
if(matrix[i][j] == '1') {
if(isSquare(matrix, dp[i-1][j-1], i, j)) {
dp[i][j] = dp[i-1][j-1] + 1 + 2*(int)Math.sqrt(dp[i-1][j-1]);
if(dp[i][j] > maxVal) {
maxVal = dp[i][j];
}
}
} else {
dp[i][j] = 0;
}
}
}
return maxVal;
}
boolean isSquare(char[][] matrix, int tmp, int m, int n) {
int len = (int)Math.sqrt(tmp);
for(int i = m - len; i < m; i++) {
if(matrix[i][n] != '1') {
return false;
}
}
for(int j = n - len; j < n; j++) {
if(matrix[m][j] != '1') {
return false;
}
}
return true;
}
}
還是有幾個例子沒有通過。
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length;
if(m == 0) return 0;
int n = matrix[0].length;
int[][] dp = new int[m][n];
int maxVal = 0;
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(matrix[i][j] == '1') {
if(i == 0 || j == 0) {
dp[i][j] = matrix[i][j] - '0';
} else {
dp[i][j] = Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1])) + 1;
}
maxVal = Math.max(dp[i][j], maxVal);
}
}
}
return maxVal*maxVal;
}
}
54. leetcode 887.雞蛋掉落
解法一:(套用動態規划模板,超時)
class Solution {
public int superEggDrop(int K, int N) {
int[][] dp = new int[K+1][N+1];
return eggHelper(K, N, dp);
}
public int eggHelper(int K, int N, int[][] dp) {
if(K == 1) return N;
if(N == 0) return 0;
if(dp[K][N] != 0) return dp[K][N];
int res = N;
for(int i = 1; i <= N; i++) {
res = Math.min(res, Math.max(eggHelper(K-1, i-1, dp), eggHelper(K, N-i, dp)) + 1);
}
dp[K][N] = res;
return res;
}
}
題目要求是求最壞情況下,最小的移動次數:
-
狀態定義f(K, N) (不是數組,而是一個函數,其實是遞歸),為K個雞蛋,N層樓最壞情況下,最小移動次數。
-
狀態轉移方程 :
-
for i in range(1, N+1): (遍歷N層樓,即遍歷每一次選擇, 選擇的改變導致狀態的改變) res = min(res, max(f(K-1, i-1), f(K, N-i)) + 1) # max(f(K-1, i-1), f(K, N-i)) + 1 保證該選擇下最壞的情況
-
超時的原因主要是: 下面這段代碼是線性地搜索最小值,每一次只會變化一個狀態。下面二分搜索的優化思路就是針對這一點進行優化。
- res = Math.min(res, Math.max(eggHelper(K-1, i-1, dp), eggHelper(K, N-i, dp)) + 1);
-
時間復雜度: 子問題個數* 函數本身復雜度
- 函數本身復雜度,里面只有一個for循環,所以為O(N)
- 子問題個數:不同狀態組合的總數,f(k,n) 的個數,O(k*n)
- 所以時間復雜度為O(k*N^2)
-
空間復雜度:dp申請的空間/子問題個數 = k*n
解法二:(動態規划+二分查找)
class Solution {
public int superEggDrop(int K, int N) {
int[][] dp = new int[K+1][N+1];
return eggHelper(K, N, dp);
}
public int eggHelper(int K, int N, int[][] dp) {
if(K == 1) return N;
if(N == 0) return 0;
if(dp[K][N] != 0) return dp[K][N];
int res = N;
// for(int i = 1; i <= N; i++) {
// res = Math.min(res, Math.max(eggHelper(K-1, i-1, dp), eggHelper(K, N-i, dp)) + 1);
// }
int lo = 1, hi = N;
while(lo <= hi) {
int mid = (lo + hi) >> 1;
int broken = eggHelper(K-1, mid-1, dp);
int not_broken = eggHelper(K, N - mid, dp);
if(broken > not_broken) {
hi = mid - 1;
res = Math.min(res, broken+1);
} else {
lo = mid+1;
res = Math.min(res, not_broken + 1);
}
}
dp[K][N] = res;
return res;
}
}
- 可以使用二分查找的原因是,能夠發現規律,當eggHelper(K-1, i-1, dp) == eggHelper(K, N-i, dp)) 此時res取值最小。
- 二分查找時間復雜度為O(log(N)),所以整個函數的時間復雜度為O(kNlog(N))
解法三(動態規划/ 更換狀態的定義/ 特殊的狀態定義)
class Solution {
public int superEggDrop(int K, int N) {
int[][] dp = new int[K+1][N+1];
int m = 0;
while(dp[K][m] < N) {
m++;
for(int i = 1; i <= K; i++) {
dp[i][m] = dp[i-1][m-1] + dp[i][m-1] + 1;
}
}
return m;
}
}
55. leetcode 300. 最長上升子序列
class Solution {
public int lengthOfLIS(int[] nums) {
int len = nums.length;
if(len == 0) return 0;
int[] dp = new int[len];
for(int i = 0; i < len; i++) {
dp[i] = 1;
}
int maxVal = 1;
for(int i = 1; i < len; i++) {
for(int j = 0; j < i; j++) {
if(nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j]+1);
}
}
if(dp[i] > maxVal) {
maxVal = dp[i];
}
}
return maxVal;
}
}
56. leetcode 198.打家劫舍
class Solution {
public int rob(int[] nums) {
int len = nums.length;
if(len == 0) return 0;
int[] dp = new int[len];
if(len >= 1) dp[0] = nums[0];
if(len >= 2) dp[1] = Math.max(nums[0], nums[1]);
for(int i = 2; i < len; i++) {
dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i]);
}
return dp[len-1];
}
}
todo:
303 √413 √343 √279 √646 √
376 √416 √494 474 322
518 139 377 309 714
123 188 583 72 650
刷題心得:
一直都在用中文版力扣刷題,可是很多題解寫的不是很詳細,或者有些看起來很吃力,這時候可以切換到美國版的leetcode到題解區去找找靈感,以下是切換方法。
中文版題目url:https://leetcode-cn.com/problems/longest-common-subsequence/
美國版url: https://leetcode.com/problems/longest-common-subsequence/
發現了沒有,把中文版里面的'-cn'刪掉 然后回車就可以訪問了。
57. leetcode 303. 區域和檢索-數組不可變
class NumArray {
public NumArray(int[] nums) {
int len = nums.length;
if(len != 0) {
dp = new int[len];
dp[0] = nums[0];
for(int i = 1; i < len; i++) {
dp[i] = dp[i-1] + nums[i];
}
}
}
public int[] dp;
public int sumRange(int i, int j) {
if(dp.length == 0) return 0;
if(i == 0) return dp[j];
return dp[j]-dp[i-1];
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* int param_1 = obj.sumRange(i,j);
*/
這里依然使用動態規划的思想,將反復利用的數值保存起來。不過需要注意臨界條件。
58. leetcode 413. 等差數列划分
解法一:(奇淫技巧)
class Solution {
public int numberOfArithmeticSlices(int[] A) {
int sum = 0;
int cur = 0;
int len = A.length;
if(len <= 2) return 0;
for(int i = 2; i < len; i++) {
if(A[i]- A[i-1] == A[i-1] - A[i-2]) {
cur += 1;
sum += cur;
} else {
cur = 0;
}
}
return sum;
}
}
這里的 sum += cur;
cur 每次加一 表示多一個新的元素,新創造cur個組合。\
[1, 2, 3, 4]_[ 1, 2,3] 時,cur = 1, 當4加入時,cur變為2,表示新增兩個組合分別為[2, 3, 4][1, 2, 3, 4]
但是這種解法不能當作模板來解其他類型的題目。不能學
解法二:(動態規划)
class Solution {
public int numberOfArithmeticSlices(int[] A) {
int len = A.length;
if(len <= 2) return 0;
int[] dp = new int[len];
int result = 0;
for(int i = 2; i < len; i++) {
if(A[i] - A[i-1] == A[i-1] - A[i-2]) {
dp[i] = dp[i-1] + 1;
result += dp[i];
}
}
return result;
}
}
其實比較難的還是:
- 狀態定義要准確: 以i為結尾的等差數列的個數
- result += dp[i] 這個要能想到
59. leetcode 343. 整數拆分
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n+1];
if(n == 2) return 1;
if(n == 3) return 2;
dp[1] = 1;
dp[2] = 2;
dp[3] = 3;
int maxVal = 0;
for(int i = 4; i <= n; i++) {
for(int j = 1; j <= i/2; j++) {
dp[i] = Math.max(dp[i], dp[j]*dp[i-j]);
}
}
return dp[n];
}
}
60. leetcode 279. 完全平方數
解法一(超時)
class Solution {
public int numSquares(int n) {
if(n == 0) return 0;
int[] dp = new int[n+1];
dp[0] = 0;
for(int i = 1; i <= n; i++) {
dp[i] = Integer.MAX_VALUE;
}
for(int i = 1; i <= n; i++) {
for(int j = 0; j < i; j++) {
if(isSqrt((double)(i - j))) {
dp[i] = Math.min(dp[i], dp[j] + 1);
}
}
}
return dp[n];
}
public boolean isSqrt(double num) {
double tmp = Math.sqrt(num);
if(tmp - (int) tmp != 0) {
return false;
}
return true;
}
}
運行超時,主要是有兩層循環,導致時間復雜度為O(n^2)
解法二(小處理技巧)
class Solution {
public int numSquares(int n) {
if(n == 0) return 0;
int[] dp = new int[n+1];
dp[0] = 0;
for(int i = 1; i <= n; i++) {
dp[i] = Integer.MAX_VALUE;
}
for(int i = 1; i <= n; i++) {
for(int j = 1; i - j*j >= 0; j++) {
dp[i] = Math.min(dp[i], dp[i -j*j] + 1);
}
}
return dp[n];
}
}
兩個處理方式有些不同,第一種通過判斷i-j 是不是平方數
第二種方法,通過i-j*j i直接減去平方數,然后從數組里面找,這樣很節省時間。別樣的剪枝手段。
61. leetcode 646. 最長對數鏈
class Solution {
public int findLongestChain(int[][] pairs) {
int len = pairs.length;
if(pairs == null || len == 0) return 0;
Arrays.sort(pairs, (a, b)->(a[0] - b[0])); //good
int[] dp = new int[len];
Arrays.fill(dp, 1);//good
for(int i = 0; i < len; i++) {
for(int j = 0; j < i; j++) {
if(pairs[i][0] > pairs[j][1]) {
dp[i] = Math.max(dp[i], dp[j]+1);
}
}
}
return dp[len-1];
}
}
這里對二維數組進行排序的操作非常值得學習。
62. leetcode 376. 擺動序列
解法一:
class Solution {
public int wiggleMaxLength(int[] nums) {
int len = nums.length;
if(len == 0) return 0;
int[][] dp = new int[len][2];
for(int i = 0; i < len; i++) {
dp[i][0] = 1;
}
int maxLen = 1;
for(int i = 1; i < len; i++) {
for(int j = 0; j < i; j++) {
if(j == 0 && nums[i] != nums[j]) {
dp[i][0] = Math.max(dp[i][0], dp[j][0]+1);
dp[i][1] = nums[j] > nums[i] ? -1 : 1;
} else if((nums[j] > nums[i] && dp[j][1] > 0) ||( nums[j] < nums[i] && dp[j][1] < 0)) {
dp[i][0] = Math.max(dp[i][0], dp[j][0] + 1);
dp[i][1] = nums[j] > nums[i] ? -1 : 1;
}
}
maxLen = Math.max(maxLen, dp[i][0]);
}
return maxLen;
}
}
運行耗時很長:10ms,擊敗8.43%
解法二:
class Solution {
public int wiggleMaxLength(int[] nums) {
int len = nums.length;
if(len == 0) return 0;
int[] up = new int[len];
int[] down = new int[len];
up[0] = 1;
down[0] = 1;
for(int i = 1; i < len; i++) {
if(nums[i] > nums[i-1]) {
up[i] = down[i-1] + 1;
down[i] = down[i-1];
} else if(nums[i] < nums[i-1]) {
down[i] = up[i-1] + 1;
up[i] = up[i-1];
} else {
up[i] = up[i-1];
down[i] = down[i-1];
}
}
return Math.max(up[len-1], down[len-1]);
}
}
比較新穎的動態規划處理手段。值得學習。
63. leetcode 416. 分割等和子集
class Solution {
public boolean canPartition(int[] nums) {
int len = nums.length;
int sum = 0;
for(int num : nums) {
sum += num;
}
if(sum%2 != 0) return false;
int target = sum / 2;
boolean[] dp = new boolean[target+1];
for(int i = 0; i <= target; i++) {
if(nums[0] == i) dp[i] = true;
}
for(int i = 1; i < len; i++) {
for(int j = target; j >= nums[i]; j--) {
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[target];
}
}
64. leetcode 10. 正則表達式匹配
class Solution {
public boolean isMatch(String s, String p) {
int lens = s.length();
int lenp = p.length();
// if(lenp == 0) return false;
dp = new int[lens+1][lenp+1];
return isMatchCore(0, 0, s, p);
}
public int[][] dp;
public boolean isMatchCore(int i, int j, String s, String p) {
if(j == p.length()) return i == s.length();
if(i <= s.length() && j <= p.length() && dp[i][j] != 0) return dp[i][j] > 0;
boolean firstMatch = i < s.length() && (p.charAt(j) == s.charAt(i) || p.charAt(j) == '.');
boolean ans = false;
if(j + 1 < p.length() && p.charAt(j+1) == '*') {
ans = isMatchCore(i, j+2, s, p) || firstMatch && isMatchCore(i+1, j, s, p);
} else {
ans = firstMatch && isMatchCore(i+1, j+1, s, p);
}
if(i <= s.length() && j <= p.length()) dp[i][j] = ans ? 1 : -1;
return ans;
}
}
遞歸+備忘錄->動態規划
值得多刷幾遍,很多細節需要處理。
65. leetcode 494. 目標和
解法一:(回溯,超時)
class Solution {
public int findTargetSumWays(int[] nums, int S) {
if(nums.length == 0) return 0;
Stack<Integer> stack = new Stack<>();
backtrack(nums, S, stack);
return ans;
}
public int ans = 0;
public void backtrack(int[] nums, int S, Stack<Integer> stack) {
if(stack.size() == nums.length) {
int result = 0;
for(int i = 0; i < stack.size(); i++) {
if(stack.get(i) == 1) {
result += nums[i];
} else if(stack.get(i) == 0) {
result -= nums[i];
}
}
if(result == S) ans += 1;
} else {
for(int i = 0; i < 2; i++) {
stack.push(i);
backtrack(nums, S, stack);
stack.pop();
}
}
}
}
其實回溯相當於暴力求解,將所有的可能都遍歷一遍,中間可能會加上剪枝的操作。
解法二:(動態規划-> 轉化為分割等和子集)
class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num : nums) {
sum += num;
}
if(sum < S || (sum + S) % 2 != 0) return 0;
return subSum(nums, (sum+S) >> 1);
}
public int subSum(int[] nums, int s) {
int[] dp = new int[s+1];
dp[0] = 1;
for(int num : nums) {
for(int i = s; i >= num; i--) {
dp[i] += dp[i - num];
}
}
return dp[s];
}
}
66. leetcode 474. 一和零
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
if(strs.length == 0) return 0;
int[][] dp = new int[m+1][n+1];
for(String s : strs) {
int ones = 0, zeros = 0;
for(char c : s.toCharArray()) {
if(c == '0'){
zeros++;
} else {
ones++;
}
}
for(int i = m; i >= zeros; i--) {
for(int j = n; j >= ones; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i-zeros][j-ones] + 1);
}
}
}
return dp[m][n];
}
}
多維費用的背包問題。
67. leetcode 377. 組合總和IV
解法一:(回溯 ->超時)
class Solution {
public int combinationSum4(int[] nums, int target) {
backtrack(nums, target);
return result;
}
public int result = 0;
public void backtrack(int[] nums, int target) {
if(target == 0) {
result += 1;
return;
} else if(target > 0){
for(int i = 0; i < nums.length; i++) {
backtrack(nums, target - nums[i]);
}
} else {
return;
}
}
}
發現有重復的子問題,用動態規划。
解法二:(動態規划)
class Solution {
public int combinationSum4(int[] nums, int target) {
int len = nums.length;
if(len == 0) return 0;
int[] dp = new int[target+1];
dp[0] = 1; // 只有當nums中有一個數恰好等於target時才能遍歷到dp[0] 這時dp[0] = 1
for(int i = 1; i <= target; i++) {
for(int num : nums) {
if(i - num >= 0) {
dp[i] += dp[i-num];
}
}
}
return dp[target];
}
}
根據重疊子問題來發現使用動態規划,分析重疊子問題的情況。
狀態轉移方程:
dp[i] = sum(dp[i-num]);
但是自己覺得可以用選與不選的操作來做一做,不知道可不可行(背包的思想):
dp[i] = 選了的結果+沒選的結果
68. leetcode 583.兩個字符串的刪除操作
解法一:(遞歸)
class Solution {
public int minDistance(String word1, String word2) {
//尋找最長公共子序列
int len1 = word1.length();
int len2 = word2.length();
if(len1 == 0 || len2 == 0) return Math.abs(len1 - len2);
return len1+len2-lcs(word1, word2)*2;
}
public int lcs(String word1, String word2) {
if(word1.length() == 0 || word2.length() == 0) return 0;
if(word1.charAt(0) == word2.charAt(0)) {
return lcs(word1.substring(1), word2.substring(1))+1;
} else {
return Math.max(lcs(word1.substring(1), word2), lcs(word1, word2.substring(1)));
}
}
}
從反方向思考發現本題是考察lcs,於是采取遞歸做法,發現超時,僅僅通過了25個測試用例。
有很多重疊子問題,於是采用動態規划。
解法二:(動態規划)
public int minDistance(String word1, String word2) {
//尋找最長公共子序列
int len1 = word1.length();
int len2 = word2.length();
if(len1 == 0 || len2 == 0) return Math.abs(len1 - len2);
int[][] dp = new int[len1+1][len2+1];
for(int i = 1; i <= len1; i++) {
for(int j = 1; j <= len2; j++) {
if(word1.charAt(i-1) == word2.charAt(j-1)) {
dp[i][j] = dp[i-1][j-1]+1;
} else {
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
}
}
}
return len1+len2 - 2*dp[len1][len2];
}
69. leetcode 38. 報數
class Solution {
public String countAndSay(int n) {
String tmp = "1";
for(int i = 2; i <= n; i++) {
StringBuilder sb = new StringBuilder();
int pre = 0, next = 1; //采用雙指針
int count = 1;
while(next < tmp.length()) {
if(tmp.charAt(pre) == tmp.charAt(next)) {
count++;
next++;
} else {
sb.append(count).append(tmp.charAt(pre));
pre = next;
next++;
count = 1;
}
}
sb.append(count).append(tmp.charAt(pre));
tmp = sb.toString();
}
return tmp;
}
}
70. leetcode 32. 最長有效括號
解法一(暴力法)
class Solution {
public int longestValidParentheses(String s) {
int len = s.length();
Stack<Character> stack = new Stack();
if(len == 0) return 0;
int maxLen = 0;
for(int i = 0; i < len-1; i++) {
stack.push(s.charAt(i));
for(int j = i+1; j < len; j++) {
if(stack.empty()) {stack.push(s.charAt(j));}
else if( stack.peek() == ')') {
continue;
} else if(!isMatch(s.charAt(j))) {
stack.push(s.charAt(j));
}else {
stack.pop();
}
if(stack.isEmpty()) {
maxLen = Math.max(maxLen, j-i+1);
}
}
while(!stack.empty()) {
stack.pop();
}
}
return maxLen;
}
public boolean isMatch(char t) {
return t==')';
}
}
解法二(動態規划)
根據上面的暴力過程,可以發現有很多重疊子問題。但是狀態的定義以及狀態轉移很難想出來
class Solution {
public int longestValidParentheses(String s) {
int len = s.length();
if(len == 0) return 0;
int[] dp = new int[len];
char[] sArray = s.toCharArray();
int maxLen = 0;
for(int i = 1; i < len; i++) {
if(sArray[i] == ')' && sArray[i-1] == '(') {
if(i-2 < 0) {
dp[i] = 2;
} else {
dp[i] = dp[i-2] + 2;
}
} else if(sArray[i] == ')' && sArray[i-1] == ')') {
if(i-dp[i-1]-1 >= 0 && sArray[i-dp[i-1]-1] == '(') {
dp[i] = i-dp[i-1]-2 >= 0 ? dp[i-1] + dp[i-dp[i-1]-2] +2 : dp[i-1] + 2;
}
}
maxLen = Math.max(maxLen, dp[i]);
}
return maxLen;
}
}
跟最長字符串的處理手段有點區別,兩個要好好對比。
寫動態規划的時候還要注意邊界條件的處理,會訪問到數組邊界外的情況。
71. leetcode 44. 通配符匹配
解法一(遞歸+備忘) 超時
class Solution {
public boolean isMatch(String s, String p) {
char[] ss = s.toCharArray();
char[] pp = p.toCharArray();
dp = new int[s.length() + 1][p.length() + 1];
return back(ss, pp, 0, 0);
}
public int dp[][];
public boolean back(char[] ss, char[] pp, int i, int j) {
if (i == ss.length && j < pp.length && pp[j] == '*') {
return back(ss, pp, i, j+1);
}else if(i == ss.length && j != pp.length || i != ss.length && j == pp.length) {
return false;
} else if(i == ss.length && j == pp.length) {
return true;
}
boolean ans = false;
if(i < ss.length && j < pp.length && dp[i][j] != 0) return dp[i][j] > 0;
if(ss[i] == pp[j] || pp[j] == '?') {
ans = back(ss, pp, i+1, j+1);
} else if (pp[j] == '*') {
ans = back(ss, pp, i+1, j) || back(ss, pp, i, j+1);
} else {
dp[i][j] = ans ? 1 : -1;
}
return ans;
}
}
普通遞歸以及備忘錄遞歸都導致超時,最耗時的是if(pp[j] == '*')這一塊。
解法二(動態規划)
class Solution {
public boolean isMatch(String s, String p) {
int lens = s.length();
int lenp = p.length();
boolean dp[][] = new boolean[lens+1][lenp+1]; // 處理s 和 p為空字符的特別好的手段
// 很關鍵的初始化步驟
dp[0][0] = true;
for(int i = 1; i <= lenp; i++) {
dp[0][i] = dp[0][i-1] && p.charAt(i-1) == '*';
}
for(int i = 1; i <= lens; i++) {
for(int j = 1; j <= lenp; j++) {
if(s.charAt(i-1) == p.charAt(j-1) || p.charAt(j-1) == '?') {
dp[i][j] = dp[i-1][j-1];
} else if(p.charAt(j-1) == '*'){
dp[i][j] = dp[i][j-1] || dp[i-1][j];
}
}
}
return dp[lens][lenp];
}
}
72. leetcode 72. 編輯距離
class Solution {
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1+1][len2+1];
for(int i = 1; i <= len1; i++) dp[i][0] = i;
for(int i = 1; i <= len2; i++) dp[0][i] = i;
// 對“dp[i-1][j-1] 表示替換操作,dp[i-1][j] 表示刪除操作,dp[i][j-1] 表示插入操作。”的補充理解:
// 以 word1 為 "horse",word2 為 "ros",且 dp[5][3] 為例,即要將 word1的前 5 個字符轉換為 word2的前 3 個字符,也就是將 horse 轉換為 ros,因此有:
// (1) dp[i-1][j-1],即先將 word1 的前 4 個字符 hors 轉換為 word2 的前 2 個字符 ro,然后將第五個字符 word1[4](因為下標基數以 0 開始) 由 e 替換為 s(即替換為 word2 的 第三個字符,word2[2])
// (2) dp[i][j-1],即先將 word1 的前 5 個字符 horse 轉換為 word2 的前 2 個字符 ro,然后在末尾補充一個 s,即插入操作
// (3) dp[i-1][j],即先將 word1 的前 4 個字符 hors 轉換為 word2 的前 3 個字符 ros,然后刪除 word1 的第 5 個字符
for(int i = 1; i <= len1; i++) {
for(int j = 1; j <= len2; j++) {
if(word1.charAt(i-1) == word2.charAt(j-1)) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1]))+1;
}
}
}
return dp[len1][len2];
}
}