將用戶行為表示為二分圖模型。假設給用戶\(u\)進行個性化推薦,要計算所有節點相對於用戶\(u\)的相關度,則PersonalRank從用戶\(u\)對應的節點開始游走,每到一個節點都以\(1-d\)的概率停止游走並從\(u\)重新開始,或者以\(d\)的概率繼續游走,從當前節點指向的節點中按照均勻分布隨機選擇一個節點往下游走。這樣經過很多輪游走之后,每個頂點被訪問到的概率也會收斂趨於穩定,這個時候我們就可以用概率來進行排名了。
在執行算法之前,我們需要初始化每個節點的初始概率值。如果我們對用戶\(u\)進行推薦,則令\(u\)對應的節點的初始訪問概率為1,其他節點的初始訪問概率為0,然后再使用迭代公式計算。
一般有兩種算法實現,一種是矩陣化實現,一種是非矩陣化實現。
非矩陣化實現
根據userID與itemID建立二分圖。在代碼中,self.G代表全局有向圖,為區分userID與itemID分別加了不同的前綴。另外,user-item對保存在圖中,方向是相互的。接下來,就在圖中根據概率進行轉移。
其中G = dict(item_user,**user_item)的含義是將兩個dict拼接成一個dict
import pandas as pd
import time
class PersonalRank:
def __init__(self,X,Y):
X,Y = ['user_'+str(x) for x in X],['item_'+str(y) for y in Y]
self.G = self.get_graph(X,Y)
def get_graph(self,X,Y):
"""
Args:
X: user id
Y: item id
Returns:
graph:dic['user_id1':{'item_id1':1}, ... ]
"""
item_user = dict()
for i in range(len(X)):
user = X[i]
item = Y[i]
if item not in item_user:
item_user[item] = {}
item_user[item][user]=1
user_item = dict()
for i in range(len(Y)):
user = X[i]
item = Y[i]
if user not in user_item:
user_item[user] = {}
user_item[user][item]=1
G = dict(item_user,**user_item)
return G
def recommend(self, alpha, userID, max_depth,K=10):
# rank = dict()
userID = 'user_' + str(userID)
rank = {x: 0 for x in self.G.keys()}
rank[userID] = 1
# 開始迭代
begin = time.time()
for k in range(max_depth):
tmp = {x: 0 for x in self.G.keys()}
# 取出節點i和他的出邊尾節點集合ri
for i, ri in self.G.items():
# 取節點i的出邊的尾節點j以及邊E(i,j)的權重wij,邊的權重都為1,歸一化后就是1/len(ri)
for j, wij in ri.items():
tmp[j] += alpha * rank[i] / (1.0 * len(ri))
tmp[userID] += (1 - alpha)
rank = tmp
end = time.time()
print('use_time', end - begin)
lst = sorted(rank.items(), key=lambda x: x[1], reverse=True)[:K]
for ele in lst:
print("%s:%.3f, \t" % (ele[0], ele[1]))
if __name__ == '__main__':
moviesPath = '../data/ml-1m/movies.dat'
ratingsPath = '../data/ml-1m/ratings.dat'
usersPath = '../data/ml-1m/users.dat'
# usersDF = pd.read_csv(usersPath,index_col=None,sep='::',header=None,names=['user_id', 'gender', 'age', 'occupation', 'zip'])
# moviesDF = pd.read_csv(moviesPath,index_col=None,sep='::',header=None,names=['movie_id', 'title', 'genres'])
ratingsDF = pd.read_csv(ratingsPath, index_col=None, sep='::', header=None,names=['user_id', 'movie_id', 'rating', 'timestamp'])
X=ratingsDF['user_id'][:1000]
Y=ratingsDF['movie_id'][:1000]
PersonalRank(X,Y).recommend(alpha=0.8,userID=1,max_depth=50,K=30)#輸出對用戶1推薦的 top10 item
# print('PersonalRank result',rank)
矩陣化實現
其中,\(r\)是\(m+n\)行,1列的矩陣,每一行代表該頂點對固定頂點的PR值;是\(m+n\)行,1列的矩陣,負責選取某一個頂點作為固定頂點,其數值只有1行為1,其余為0。\(M\)是m+n行,m+n列的矩陣,是轉移矩陣,其值\(M_{ij}=\frac{1}{out(i)},j \in out(i) \ else \ 0\),即為頂點的出度倒數,若沒有連接邊則為0。上式可轉換為:
其中,\((E-\alpha M^T)^{-1}\)可以看做所有頂點的推薦結果,每一列代表一個頂點項,對該頂點的PR值。
#-*-coding:utf-8-*-
"""
author:jamest
date:20190310
PersonalRank function with Matrix
"""
import pandas as pd
import numpy as np
import time
import operator
from scipy.sparse import coo_matrix
from scipy.sparse.linalg import gmres
class PersonalRank:
def __init__(self,X,Y):
X,Y = ['user_'+str(x) for x in X],['item_'+str(y) for y in Y]
self.G = self.get_graph(X,Y)
def get_graph(self,X,Y):
"""
Args:
X: user id
Y: item id
Returns:
graph:dic['user_id1':{'item_id1':1}, ... ]
"""
item_user = dict()
for i in range(len(X)):
user = X[i]
item = Y[i]
if item not in item_user:
item_user[item] = {}
item_user[item][user]=1
user_item = dict()
for i in range(len(Y)):
user = X[i]
item = Y[i]
if user not in user_item:
user_item[user] = {}
user_item[user][item]=1
G = dict(item_user,**user_item)
return G
def graph_to_m(self):
"""
Returns:
a coo_matrix sparse mat M
a list,total user item points
a dict,map all the point to row index
"""
graph = self.G
vertex = list(graph.keys())
address_dict = {}
total_len = len(vertex)
for index in range(len(vertex)):
address_dict[vertex[index]] = index
row = []
col = []
data = []
for element_i in graph:
weight = round(1/len(graph[element_i]),3)
row_index= address_dict[element_i]
for element_j in graph[element_i]:
col_index = address_dict[element_j]
row.append(row_index)
col.append(col_index)
data.append(weight)
row = np.array(row)
col = np.array(col)
data = np.array(data)
m = coo_matrix((data,(row,col)),shape=(total_len,total_len))
return m,vertex,address_dict
def mat_all_point(self,m_mat,vertex,alpha):
"""
get E-alpha*m_mat.T
Args:
m_mat
vertex:total item and user points
alpha:the prob for random walking
Returns:
a sparse
"""
total_len = len(vertex)
row = []
col = []
data = []
for index in range(total_len):
row.append(index)
col.append(index)
data.append(1)
row = np.array(row)
col = np.array(col)
data = np.array(data)
eye_t = coo_matrix((data,(row,col)),shape=(total_len,total_len))
return eye_t.tocsr()-alpha*m_mat.tocsr().transpose()
def recommend_use_matrix(self, alpha, userID, K=10,use_matrix=True):
"""
Args:
alpha:the prob for random walking
userID:the user to recom
K:recom item num
Returns:
a dic,key:itemid ,value:pr score
"""
m, vertex, address_dict = self.graph_to_m()
userID = 'user_' + str(userID)
print('add',address_dict)
if userID not in address_dict:
return []
score_dict = {}
recom_dict = {}
mat_all = self.mat_all_point(m,vertex,alpha)
index = address_dict[userID]
initial_list = [[0] for row in range(len(vertex))]
initial_list[index] = [1]
r_zero = np.array(initial_list)
res = gmres(mat_all,r_zero,tol=1e-8)[0]
for index in range(len(res)):
point = vertex[index]
if len(point.strip().split('_'))<2:
continue
if point in self.G[userID]:
continue
score_dict[point] = round(res[index],3)
for zuhe in sorted(score_dict.items(),key=operator.itemgetter(1),reverse=True)[:K]:
point,score = zuhe[0],zuhe[1]
recom_dict[point] = score
return recom_dict
if __name__ == '__main__':
moviesPath = '../data/ml-1m/movies.dat'
ratingsPath = '../data/ml-1m/ratings.dat'
usersPath = '../data/ml-1m/users.dat'
# usersDF = pd.read_csv(usersPath,index_col=None,sep='::',header=None,names=['user_id', 'gender', 'age', 'occupation', 'zip'])
# moviesDF = pd.read_csv(moviesPath,index_col=None,sep='::',header=None,names=['movie_id', 'title', 'genres'])
ratingsDF = pd.read_csv(ratingsPath, index_col=None, sep='::', header=None,names=['user_id', 'movie_id', 'rating', 'timestamp'])
X=ratingsDF['user_id'][:1000]
Y=ratingsDF['movie_id'][:1000]
rank = PersonalRank(X,Y).recommend_use_matrix(alpha=0.8,userID=1,K=30)
print('PersonalRank result',rank)