簡介
深度學習中,數據集的預處理往往是很基礎的一步,很多場景都需要將一張大圖進行切割。本篇提供一種重疊矩形框的生成方法,數據集中的圖像尺寸可以不同,根據生成的重疊矩形框可以crop出相應的圖像區域。主要難點在於函數不假設圖像的尺寸大小。
實現
以下是重疊矩形框的生成函數,是根據右下角的坐標來確定左上角的坐標,如果右下角的點超過了圖像邊緣,則讓矩形的右下角等於邊緣值。循環會讓右下角的坐標往右和往下多走一個stride,這樣可以將邊緣部分的圖像也包含進來。
#encoding=utf-8
def get_fixed_windows(image_size, wind_size, overlap_size):
'''
This function can generate overlapped windows given various image size
params:
image_size (w, h): the image width and height
wind_size (w, h): the window width and height
overlap (overlap_w, overlap_h): the overlap size contains x-axis and y-axis
return:
rects [(xmin, ymin, xmax, ymax)]: the windows in a list of rectangles
'''
rects = set()
assert overlap_size[0] < wind_size[0]
assert overlap_size[1] < wind_size[1]
im_w = wind_size[0] if image_size[0] < wind_size[0] else image_size[0]
im_h = wind_size[1] if image_size[1] < wind_size[1] else image_size[1]
stride_w = wind_size[0] - overlap_size[0]
stride_h = wind_size[1] - overlap_size[1]
for j in range(wind_size[1]-1, im_h + stride_h, stride_h):
for i in range(wind_size[0]-1, im_w + stride_w, stride_w):
right, down = i+1, j+1
right = right if right < im_w else im_w
down = down if down < im_h else im_h
left = right - wind_size[0]
up = down - wind_size[1]
rects.add((left, up, right, down))
return list(rects)
if __name__ == "__main__":
image_size = (1780, 532)
wind_size = (800, 600)
overlap_size = (300, 200)
rets = get_fixed_windows(image_size, wind_size, overlap_size)
for rect in rets:
print(rect)
'''
# output
(0, 0, 800, 600)
(500, 0, 1300, 600)
(980, 0, 1780, 600)
'''
效果

總結
實在不知道寫什么了,把之前項目里的一個圖像預處理代碼po出來。嗯🤔,還是要堅持定時寫點東西。
