Flink(一)集群配置


三台主機 centos6

已經完成的工作:

  • 防火牆已關閉
  • 主機名修改完畢,ssh免密登陸配置完成
  • jdk已安裝
  • zookeeper已經部署並運行
  • hadoop已經部署並運行

 

版本:flink-1.8.2-bin-scala_2.11

 

上傳或下載flink,解壓縮

[root@node01 software]# tar -zxvf flink-1.8.2-bin-scala_2.11.tgz -C /bigdata/application/

 

配置環境變量,建立軟連接

 

將官網hadoop的jar包放入lib目錄下

 

編輯flink-conf.yaml

jobmanager.rpc.address:值設置成你master節點的IP地址
taskmanager.heap.mb:每個TaskManager可用的總內存
taskmanager.numberOfTaskSlots:每台機器上可用CPU的總數
parallelism.default:每個Job運行時默認的並行度
taskmanager.tmp.dirs:臨時目錄
jobmanager.heap.mb:每個節點的JVM能夠分配的最大內存
jobmanager.rpc.port: 6123
jobmanager.web.port: 8081

################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################


#==============================================================================
# Common
#==============================================================================

# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn/Mesos
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.

jobmanager.rpc.address: node03

# The RPC port where the JobManager is reachable.

jobmanager.rpc.port: 6123


# The heap size for the JobManager JVM

jobmanager.heap.size: 1024m


# The heap size for the TaskManager JVM

taskmanager.heap.size: 1024m


# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.

taskmanager.numberOfTaskSlots: 2

# The parallelism used for programs that did not specify and other parallelism.

parallelism.default: 2

# The default file system scheme and authority.
# 
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
fs.default-scheme: hdfs://ns/

#==============================================================================
# High Availability
#==============================================================================

# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
#
high-availability: zookeeper

# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
# 
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...) 
#
high-availability.storageDir: hdfs://ns/flink/ha/



# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181
high-availability.zookeeper.path.root: /flink

# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
# high-availability.zookeeper.client.acl: open

#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================

# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#
state.backend: filesystem

# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
state.checkpoints.dir: hdfs://ns/flink-checkpoints

# Default target directory for savepoints, optional.
#
state.savepoints.dir: hdfs://ns/flink-checkpoints

# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend). 
#
# state.backend.incremental: false

#==============================================================================
# Rest & web frontend
#==============================================================================

# The port to which the REST client connects to. If rest.bind-port has
# not been specified, then the server will bind to this port as well.
#
rest.port: 8081

# The address to which the REST client will connect to
#
#rest.address: 0.0.0.0

# Port range for the REST and web server to bind to.
#
#rest.bind-port: 8080-8090

# The address that the REST & web server binds to
#
#rest.bind-address: 0.0.0.0

# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.

web.submit.enable: true

#==============================================================================
# Advanced
#==============================================================================

# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn or Mesos, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
#     /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
# io.tmp.dirs: /tmp

# Specify whether TaskManager's managed memory should be allocated when starting
# up (true) or when memory is requested.
#
# We recommend to set this value to 'true' only in setups for pure batch
# processing (DataSet API). Streaming setups currently do not use the TaskManager's
# managed memory: The 'rocksdb' state backend uses RocksDB's own memory management,
# while the 'memory' and 'filesystem' backends explicitly keep data as objects
# to save on serialization cost.
#
# taskmanager.memory.preallocate: false

# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first

# The amount of memory going to the network stack. These numbers usually need 
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, the default max is 1GB.
# 
# taskmanager.network.memory.fraction: 0.1
# taskmanager.network.memory.min: 64mb
# taskmanager.network.memory.max: 1gb

#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================

# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL

# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.

# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user

# The configuration below defines which JAAS login contexts

# security.kerberos.login.contexts: Client,KafkaClient

#==============================================================================
# ZK Security Configuration
#==============================================================================

# Below configurations are applicable if ZK ensemble is configured for security

# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper

# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client

#==============================================================================
# HistoryServer
#==============================================================================

# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)

# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/

# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0

# The port under which the web-based HistoryServer listens.
historyserver.web.port: 8082

# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/

# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000

yarn.application-attempts: 10

 

編輯master文件

node03:8086
node01:8086

 

編輯slaves文件

node01
node02
node03

 

編輯zoo.cfg文件

################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################

# The number of milliseconds of each tick
tickTime=2000

# The number of ticks that the initial  synchronization phase can take
initLimit=10

# The number of ticks that can pass between  sending a request and getting an acknowledgement
syncLimit=5

# The directory where the snapshot is stored.
# dataDir=/tmp/zookeeper

# The port at which the clients will connect
clientPort=2181

# ZooKeeper quorum peers
server.1=node01:2888:3888
server.2=node02:2888:3888
server.3=node03:2888:3888
# server.2=host:peer-port:leader-port

 

復制到各個節點,配置環境變量,軟連接

 

啟動

bin下通過start-cluster.sh啟動

訪問node03:8086

 

Flink On Yarn模式

 

 

flink on yarn

1.第一種方式:yarn-session.sh(開辟資源)+flink run(提交任務)

啟動一個一直運行的flink集群

# 下面的命令會申請5個taskmanager,每個2G內存和2個solt,超過集群總資源將會啟動失敗。
./bin/yarn-session.sh -n 5 -tm 2048 -s 2 --nm leo-flink -d

 

-n ,--container <arg> 分配多少個yarn容器(=taskmanager的數量)

-D <arg> 動態屬性

-d, --detached 獨立運行

-jm,--jobManagerMemory <arg> JobManager的內存 [in MB]

-nm,--name 在YARN上為一個自定義的應用設置一個名字

-q,--query 顯示yarn中可用的資源 (內存, cpu核數)

-qu,--queue <arg> 指定YARN隊列.

-s,--slots <arg> 每個TaskManager使用的slots(vcore)數量

-tm,--taskManagerMemory <arg> 每個TaskManager的內存 [in MB]

-z,--zookeeperNamespace <arg> 針對HA模式在zookeeper上創建NameSpace

請注意:

請注意:client必須要設置YARN_CONF_DIR或者HADOOP_CONF_DIR環境變量,通過這個環境變量來讀取YARN和HDFS的配置信息,否則啟動會失敗。
經實驗發現,其實如果配置的有HADOOP_HOME環境變量的話也是可以的(只是會出現警告)。HADOOP_HOME ,YARN_CONF_DIR,HADOOP_CONF_DIR 只要配置的有任何一個即可。

運行結果如圖:

 

 

 

 
yarn-flink

瀏覽器中訪問 http://node4:45559

 

 

 

yarn-flink

yarn web-ui中

 

 

 

yarn-flink


部署長期運行的flink on yarn實例后,在flink web上看到的TaskManager以及Slots都為0。只有在提交任務的時候,才會依據分配資源給對應的任務執行。</p>

提交Job到長期運行的flink on yarn實例上:

./bin/flink run ./examples/batch/WordCount.jar -input hdfs://leo/test/test.txt -output hdfs://leo/flink-word-count

通過web ui可以看到已經運行完成的任務:

 
task

2.第二種方式:flink run -m yarn-cluster(開辟資源+提交任務)

./bin/flink run -m yarn-cluster -yn 2 -yjm 1024 -ytm 1024   ./examples/batch/WordCount.jar -input hdfs://leo/test/test.txt -output hdfs://leo/test/flink-word-count2.txt

yarn web ui上查看剛剛提交的任務已經執行成功

 

 

 

task

作者:NikolasNull
鏈接:https://www.jianshu.com/p/4dc0a980e7e9
來源:簡書
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請注明出處。

 

 

[root@node03 bin]# start-cluster.sh
Starting HA cluster with 2 masters.
ssh: connect to host node03 port 22: No buffer space available
Starting standalonesession daemon on host node01.
Starting taskexecutor daemon on host node01.
Starting taskexecutor daemon on host node02.
ssh: connect to host node03 port 22: No buffer space available
[root@node03 bin]# start-cluster.sh
Starting HA cluster with 2 masters.
ssh: connect to host node03 port 22: No buffer space available
[INFO] 1 instance(s) of standalonesession are already running on node01.
Starting standalonesession daemon on host node01.
[INFO] 1 instance(s) of taskexecutor are already running on node01.
Starting taskexecutor daemon on host node01.
[INFO] 1 instance(s) of taskexecutor are already running on node02.
Starting taskexecutor daemon on host node02.
ssh: connect to host node03 port 22: No buffer space available
[root@node03 bin]# echo 512 > /proc/sys/net/ipv4/neigh/default/gc_thresh1
[root@node03 bin]# echo 2048 > /proc/sys/net/ipv4/neigh/default/gc_thresh2
[root@node03 bin]# echo 4096 > /proc/sys/net/ipv4/neigh/default/gc_thresh3

ping 或者ssh 發生connect: No buffer space available 錯誤

 

如果遇到這種情況,一般說明你的本地服務器的arp表緩存太大,而服務器內核設定的回收條數太小,一直被回收造成的。

可以用一下命令擴大arp表可以緩存的記錄條數:

echo 512 > /proc/sys/net/ipv4/neigh/default/gc_thresh1
echo 2048 > /proc/sys/net/ipv4/neigh/default/gc_thresh2
echo 4096 > /proc/sys/net/ipv4/neigh/default/gc_thresh3

這三個值缺省是128,512,1024,我用arp -an |wc -l 看到自己服務器的arp緩存表竟然有300多條記錄,修改完成后馬上就好了,最后記得把

這三條寫入/etc/rc.local 文件中,每次重啟都寫入下,不然機器重啟就又被還原至缺省值了。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM