ValueError:GraphDef cannot be larger than 2GB.解決辦法


在使用TensorFlow 1.X版本的estimator的時候經常會碰到類似於ValueError:GraphDef cannot be larger than 2GB的報錯信息,可能的原因是數據太大無法寫入graph。

一般來說,常見的數據構建方法如下:

def input_fn():
  features, labels = (np.random.sample((100,2)), np.random.sample((100,1)))
  dataset = tf.data.Dataset.from_tensor_slices((features,labels))
  dataset = dataset.shuffle(100000).repeat().batch(batch_size)
  return dataset

...
estimator.train(input_fn)

TensorFlow在讀取數據的時候會將數據也寫入Graph,所以當數據量很大的時候會碰到這種情況,之前做實驗在多GPU的時候也會遇到這種情況,即使我把batch size調到很低。所以解決辦法有兩種思路,一直不保存graph,而是使用feed_dict的方式來構建input pipeline。

不寫入graph

我的代碼環境是TensorFlow1.14,所以我以這個版本為例進行介紹。

首先總結一下estimator的運行原理(假設在單卡情況下),以estimator.train為例(eval和predict類似),其調用順序如下:

  1. estimator.train->_train_model

  2. _train_model->_train_model_default

  3. _train_model_default->_train_with_estimator_spec

  4. _train_with_estimator_spec->MonitoredTrainingSession

class Estimator():
	...
	def train():
		...
		loss = self._train_model(input_fn, hooks, saving_listeners)
		...
		
	def _train_model(self, input_fn, hooks, saving_listeners):
		if self._train_distribution:
			return self._train_model_distributed(input_fn, hooks, saving_listeners)
		else:
			return self._train_model_default(input_fn, hooks, saving_listeners)
	  
	def _train_model_default(self, input_fn, hooks, saving_listeners):
		...
		return self._train_with_estimator_spec(estimator_spec, worker_hooks,
											 hooks, global_step_tensor,
											 saving_listeners)
											 
	def _train_with_estimator_spec(self, estimator_spec, worker_hooks, hooks,
									 global_step_tensor, saving_listeners):
		....
		with training.MonitoredTrainingSession(
			master=self._config.master,
			is_chief=self._config.is_chief,
			checkpoint_dir=self._model_dir,
			scaffold=estimator_spec.scaffold,
			hooks=worker_hooks,
			chief_only_hooks=(tuple(chief_hooks) +
							  tuple(estimator_spec.training_chief_hooks)),
			save_checkpoint_secs=0,  # Saving is handled by a hook.
			save_summaries_steps=save_summary_steps,
			config=self._session_config,
			max_wait_secs=self._config.session_creation_timeout_secs,
			log_step_count_steps=log_step_count_steps) as mon_sess:

單步調試后發現,estimator寫入event文件發生在調用MonitoredTrainingSession的時刻,而真正寫入event是在執行hook的時候,例如在我的實驗中我設置了log_step_count_steps這個值,這個值會每隔指定次數steps就會打印出計算速度和當前的loss值。而實現這一功能的是StepCounterHook,它定義在tensorflow/tensorflow/python/training/basic_session_run_hooks.py中,部分定義如下:

class StepCounterHook(session_run_hook.SessionRunHook):
  """Hook that counts steps per second."""

  def __init__(...):
  	...
    self._summary_writer = summary_writer
	
  def begin(self):
    if self._summary_writer is None and self._output_dir:
      self._summary_writer = SummaryWriterCache.get(self._output_dir)
    self._summary_tag = training_util.get_global_step().op.name + "/sec"

  def before_run(self, run_context):  # pylint: disable=unused-argument
    return SessionRunArgs(self._global_step_tensor)

  def _log_and_record(self, elapsed_steps, elapsed_time, global_step):
    steps_per_sec = elapsed_steps / elapsed_time
    if self._summary_writer is not None:
      summary = Summary(value=[
          Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)
      ])
      self._summary_writer.add_summary(summary, global_step)
    logging.info("%s: %g", self._summary_tag, steps_per_sec)

所以我們只需要將出現類似於self._summary_writer.add_summary的地方注釋掉,這樣estimator在運行過程中就不會再生成event文件,也就不會有2GB的問題了。

feed_dict

為了在大數據量時使用 dataset,我們可以用 placeholder 創建 dataset。這時數據就不會直接寫到 graph 中,graph 中只有一個 placeholder 占位符。但是,用了 placeholder 就需要我們在一開始對它進行初始化填數據,需要調用 sess.run(iter.initializer, feed_dict={ x: data })

但是estimator並沒有顯示的session可以調用,那應該怎么辦呢?其實我們可以使用SessionRunHook來解決這個問題。tf.train.SessionRunHook()類定義在tensorflow/python/training/session_run_hook.py,該類的具體介紹可參見【轉】tf.SessionRunHook使用方法

仔細看一下 estimator 的 train 和 evaluate 函數定義可以發現它們都接收 hooks 參數,這個參數的定義是:List of tf.train.SessionRunHook subclass instances. Used for callbacks inside the training loop. 也就是說我們可以自己定義一個SessionRunHook作為參數傳遞到hook就可以了。

train(
    input_fn,
    hooks=None,
    steps=None,
    max_steps=None,
    saving_listeners=None
)

我們現在想要在訓練之前初始化 dataset 的 placeholder,那么我們就應該具體實現 SessionRunHook 的after_create_session 成員函數:

class IteratorInitializerHook(tf.train.SessionRunHook):
   def __init__(self):
       super(IteratorInitializerHook, self).__init__()
       self.iterator_initializer_fn = None

   def after_create_session(self, session, coord):
       del coord
       self.iterator_initializer_fn(session)

def make_input_fn():
   iterator_initializer_hook = IteratorInitializerHook()

   def input_fn():
       x = tf.placeholder(tf.float32, shape=[None,2])
       dataset = tf.data.Dataset.from_tensor_slices(x)
       dataset = dataset.shuffle(100000).repeat().batch(batch_size)
       iter = dataset.make_initializable_iterator()
       data = np.random.sample((100,2))
       iterator_initializer_hook.iterator_initializer_fn = (
           lambda sess: sess.run(iter.initializer, feed_dict={x: data})
       )
       return iter.get_next()
   return input_fn, iterator_initializer_hook

...
input_fn, iterator_initializer_hook = make_input_fn()
estimator.train(input_fn, hooks=[iterator_initializer_hook])

參考



MARSGGBO原創





2019-10-21 11:04:22




免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM