hadoop 是 java 開發的,原生支持 java;spark 是 scala 開發的,原生支持 scala;
spark 還支持 java、python、R,本文只介紹 python
spark 1.x 和 spark 2.x 用法略有不同,spark 1.x 的用法大部分也適用於 spark 2.x
Pyspark
它是 python 的一個庫,python + spark,簡單來說,想用 python 操作 spark,就必須用 pyspark 模塊
編程邏輯
環境
首先需要配置 /etc/profile
# python can call pyspark directly export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/pyspark:$SPARK_HOME/python/lib/py4j-0.10.4-src.zip:$PYTHONPATH
python 的搜索路徑 ,加上 spark 中 python 和 pyspark,以及 py4j-0.10.4-src.zip,他的作用是 負責 python 和 java 之間的 轉換。
編程
第一步,創建 SparkSession 或者 SparkContext
在 spark1.x 中是創建 SparkContext
在 spark2.x 中創建 SparkSession,或者說在 sparkSQL 應用中創建 SparkSession
第二步,創建 RDD 並操作
完整示例
from __future__ import print_function from pyspark import * import os print(os.environ['SPARK_HOME']) print(os.environ['HADOOP_HOME']) if __name__ == '__main__': sc = SparkContext("spark://hadoop10:7077") rdd = sc.parallelize("hello Pyspark world".split(' ')) counts = rdd.map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) counts.saveAsTextFile('/usr/lib/spark/out') counts.foreach(print) sc.stop()
運行方式
1. python 命令
2. spark 命令
bin/spark-submit test1.py
這里只是簡單操作,下面會詳細介紹 spark-submit 命令
任務監控
腳本模式 通過 http://192.168.10.10:8080/ 查看任務
spark-submit
[root@hadoop10 hadoop-2.6.5]# spark-submit --help Options: --master MASTER_URL spark://host:port, mesos://host:port, yarn, 指定 spark 運行模式,即使在 代碼里指定了 spark master,此處也需要重新指定 k8s://https://host:port, or local (Default: local[*]). --deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or client 模式 or cluster 模式 on one of the worker machines inside the cluster ("cluster") (Default: client). --class CLASS_NAME Your application's main class (for Java / Scala apps). --name NAME A name of your application. --jars JARS Comma-separated list of jars to include on the driver and executor classpaths. --packages Comma-separated list of maven coordinates of jars to include on the driver and executor classpaths. Will search the local maven repo, then maven central and any additional remote repositories given by --repositories. The format for the coordinates should be groupId:artifactId:version. --exclude-packages Comma-separated list of groupId:artifactId, to exclude while resolving the dependencies provided in --packages to avoid dependency conflicts. --repositories Comma-separated list of additional remote repositories to search for the maven coordinates given with --packages. --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place on the PYTHONPATH for Python apps. --files FILES Comma-separated list of files to be placed in the working directory of each executor. File paths of these files in executors can be accessed via SparkFiles.get(fileName). --conf PROP=VALUE Arbitrary Spark configuration property. --properties-file FILE Path to a file from which to load extra properties. If not specified, this will look for conf/spark-defaults.conf. --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M). 指定 driver 內存, --driver-java-options Extra Java options to pass to the driver. --driver-library-path Extra library path entries to pass to the driver. --driver-class-path Extra class path entries to pass to the driver. Note that jars added with --jars are automatically included in the classpath. --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G). 指定 executor 內存 --proxy-user NAME User to impersonate when submitting the application. This argument does not work with --principal / --keytab. --help, -h Show this help message and exit. 查看所有參數 --verbose, -v Print additional debug output. --version, Print the version of current Spark. Cluster deploy mode only: --driver-cores NUM Number of cores used by the driver, only in cluster mode 指定 cpu 個數 (Default: 1). Spark standalone or Mesos with cluster deploy mode only: --supervise If given, restarts the driver on failure. --kill SUBMISSION_ID If given, kills the driver specified. --status SUBMISSION_ID If given, requests the status of the driver specified. Spark standalone and Mesos only: --total-executor-cores NUM Total cores for all executors. Spark standalone and YARN only: --executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode, or all available cores on the worker in standalone mode) YARN-only: --queue QUEUE_NAME The YARN queue to submit to (Default: "default"). --num-executors NUM Number of executors to launch (Default: 2). If dynamic allocation is enabled, the initial number of executors will be at least NUM. --archives ARCHIVES Comma separated list of archives to be extracted into the working directory of each executor. --principal PRINCIPAL Principal to be used to login to KDC, while running on secure HDFS. --keytab KEYTAB The full path to the file that contains the keytab for the principal specified above. This keytab will be copied to the node running the Application Master via the Secure Distributed Cache, for renewing the login tickets and the delegation tokens periodically.
注意參數寫在前面,運行的文件寫在后面,如下
spark-submit --master yarn-client --driver-memory 512m xx.py