Google Object detection配置與使用


Google Object detection

前言:

本文記錄了使用Google發布的Object detection(July 1st, 2019)接口,完成了對標注目標的檢測。參考了很多博文,在此記錄配置過程,方便之后的再次調用。

首先貼出完整的代碼地址:https://github.com/tensorflow/models

Tensorflow Object Detection API:https://github.com/tensorflow/models/tree/master/research/object_detection

一、環境配置

參考網址:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md

所有的環境都搭建在Anaconda創建的環境下

在windows10和Ubuntu下我都進行了配置,下方的配置會注明操作系統的區別

依賴包安裝

在上面參考網址上,已經明確給出了所需要的環境,直接用pip命令下載即可。

Protobuf 安裝

下載地址:https://github.com/google/protobuf/releases

win:

  • win10系統下載了protoc-3.9.1-win64.zip,解壓后將其中的protoc.exe放置C:\Windows位置;

  • 通過命令窗口,定位到models/research/目錄下,運行如下指令:

    # From /models/research/
    protoc object_detection/protos/*.proto --python_out=.

    此處我出現了No such file or directory的錯誤

    采用一個個文件名單獨輸入的方式即可,例如:

    # C:\Users\Zhucc\Desktop\ObjDec\models\research>protoc
    object_detection/protos/anchor_generator.proto --python_out=.

Linux:

  • 通過pip安裝pip install protobuf,我的版本為3.9.1

  • 定位到models/research/目錄下,運行如下指令:

    # From /models/research/
    protoc object_detection/protos/*.proto --python_out=.

    一行命令搞定,很舒服

Python環境配置:

win

  • 轉到添加環境變量

  • 可在系統變量/用戶變量選項框中新建環境變量

  • 變量名:PYTHONPATH

  • 變量值:

    • C:\Users\Zhucc\Desktop\ObjDec\models\research

    • C:\Users\Zhucc\Desktop\ObjDec\models\research\slim

Linux

  • 轉到./models/research目錄下,運行如下命令:

    # From /models/research/
    export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

COCO API 安裝

win:

COCO對於Windows是不支持的,因此需要通過其他的方式安裝

  • 跳轉至:https://github.com/philferriere/cocoapi 將代碼下載好

  • win+r+cmd運行終端,進入*/cocoapi-master/PythonAPI

  • 運行如下命令:

    python setup.py build_ext install

    運行完成后,會發現_mask.c此文件被更新

    我電腦本身就存在Visual Studio2015,未出現任何錯誤

  • 然后將PythonAPI中的pycocotools放到*/models/research目錄下即可

參考網址:https://blog.csdn.net/benzhujie1245com/article/details/82686973

Linux:

只需按照官方的要求配置即可:

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools <path_to_tensorflow>/models/research/

驗證安裝環境:

win:

  • 進入*/models/research/object_detection

  • Jupiter Notebook打開object_detection_tutorial.ipynb

代碼解析:略,后續補充

  • 運行即可,若出現被框出來的狗/人/風箏呀就說明你已經基本成功的在win10環境下配置了運行環境了

注意:其實官方的代碼是不會顯示圖片的,具體原因見如下網址:

https://blog.csdn.net/benzhujie1245com/article/details/82686973

但是!我改了后顯示圖片的FIgure會出現未響應的情況

因為只是驗證環境,將后兩句顯示的代碼改為:

img = Image.fromarray(image_np, 'RGB')
img.show()

雖然有點傻,但是至少可以顯示出圖片來

Linux:

官方方法:
python object_detection/builders/model_builder_test.py
# 結果:
# ................
# ----------------------------------------------------------------------
# Ran 16 tests in 0.285s
# OK
采用Jupiter Notebook

未試過,待補充

二、准備數據

在配置完成ObjectDetection后,在訓練模型前,需要對你要識別的物體數據進行處理。

首先說明文件夾目錄

├─Data
│ ├─test
| | ├─images
│ │ ├─labels
│ │ ├─test.csv
| | └─test.tfrecord
│ └─train
|   ├─images
│     ├─labels
│     ├─train.csv
|   └─train.tfrecord
| ├─xml2csv.py
| ├─csv2tfrecords.py

數據准備

根據你需要識別的物體,對該物體進行數據的收集。

例如:此次我對人臉進行識別,隨意的找了80張圖片,作為我此次的訓練集(60)和驗證集(20)。

為了方便起見,圖采集的圖像進行重命名,以下為參考代碼:

# coding:utf-8
import os
import random
from PIL import Image
​
​
def deleteImages(file_path, file_list):
    """
    刪除圖片
    """
    for fileName in file_list:
        command = "del " + file_path + "\\" + fileName
        os.system(command)
​
​
def change_image_name(file_path, file_list):
    """
    修改圖片名字
    """
    for index, fileName in enumerate(file_list):
        if fileName.find('.jpg') == -1:
            continue
        print(index, fileName)
        newFileName = str('%03d' % index) + ".jpg"
        print(newFileName)
        im = Image.open(file_path + '/' + fileName)
        im.save(file_path + '/' + newFileName)
​
​
def main():
    # file_path = '.\\train\\images'
    file_path = '.\\test\\images'
    file_list = os.listdir(file_path)
    random.shuffle(file_list)
​
    change_image_name(file_path, file_list)
    deleteImages(file_path, file_list)
​
​
if __name__ == '__main__':
    main()

數據標注

在尋找完數據后,需要對數據進行標注,標注采用的工具如下:https://github.com/tzutalin/labelImg,根據你自身的環境,按照工具的說明進行操作即可。

我的環境為Anaconda+Windows,因此操作流程為:

# 1.Open the Anaconda Prompt and go to the labelImg directory
# 2.
conda install pyqt=5  # conda已經帶有了,略過
pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

labelImage的安裝與使用參考鏈接:https://blog.csdn.net/jesse_mx/article/details/53606897

將標注后生成的xml文件放到相應的train\labelstest\labels文件夾下

不過此過程及其枯燥且耗時

數據轉換

數據轉換的步驟為:xml->csv->tfrecords

為什么不直接從xml轉換為tfrecords文件:-)

  • xml->csv代碼:

import glob
import pandas as pd
import xml.etree.ElementTree as ET
​
# 需要修改地方:選擇訓練集train還是測試集test
datasets = 'train'
csv_path = '.\\' + datasets + '\\'
xml_path = '.\\' + datasets + '\\labels\\'
​
​
def xml_to_csv(path):
    """將xml轉換成csv格式的數據"""
    xml_list = []
    for xml_file in glob.glob(path + '*.xml'):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall('object'):
            value = (root.find('filename').text,
                     int(root.find('size')[0].text),
                     int(root.find('size')[1].text),
                     member[0].text,
                     int(member[4][0].text),
                     int(member[4][1].text),
                     int(member[4][2].text),
                     int(member[4][3].text)
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df
​
​
def main():
    xml_df = xml_to_csv(xml_path)
    xml_df.to_csv(csv_path + datasets + '.csv', index=None)
    print('Successfully converted %s\'s xml to csv.' % datasets)
​
​
if __name__ == '__main__':
    main()

轉換完成后格式如下:

filename,width,height,class,xmin,ymin,xmax,ymax 000,500,333,mouth,265,256,370,315 000,500,333,eye,201,119,276,160 000,500,333,eye,363,114,447,158 000,500,333,face,151,7,498,326

  • csv->tfrecords代碼

import os
import io
import pandas as pd
import tensorflow as tf
​
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple
​
# 此時是訓練集還是測試集
datasets = 'train'
flags = tf.app.flags
flags.DEFINE_string('csv_input', './%s/%s.csv' % (datasets, datasets), 'Path to the CSV input')
flags.DEFINE_string('output_path', './%s/%s.tfrecord' % (datasets, datasets), 'Path to output TFRecord')
flags.DEFINE_string('train_or_test', '%s' % datasets, 'train/test datasets')
FLAGS = flags.FLAGS
​
​
# 這里將label修改成自己的類別
def class_text_to_int(row_label):
    if row_label == 'face':
        return 1
    if row_label == 'eye':
        return 2
    if row_label == 'mouth':
        return 3
    else:
        None
​
​
def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
​
​
def create_tf_example(group, path):
    # 根據之前修改圖像名字時給圖像的命令來修改
    with tf.gfile.GFile(os.path.join(path, '%03d.jpg' % group.filename), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size
​
    # 根據之前修改圖像名字時給圖像的命令來修改
    filename = ('%03d.jpg' % group.filename).encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []
​
    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))
​
    # 轉換為tfrecords需要的格式
    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example
​
​
def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd() + '\\' + FLAGS.train_or_test, 'images')
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())
​
    writer.close()
    print('Successfully created the TFRecords: {}'.format(FLAGS.output_path))
​
​
if __name__ == '__main__':
    tf.app.run()

 

三、訓練模型

在完成上述兩部后,你可以開始真正的訓練你想要的模型了。

由於這種訓練太消耗電腦資源,因此將此過程放置服務器上進行

出於方便,我在object_detection目錄下新建了training文件夾,將所有自己添加的文件全部都放置改文件夾下,其目錄結構為:

├─data
├─model
│ └─ssd_mobilenet_v1_coco_2018_01_28
│     └─saved_model
│         └─variables
├─output_model
│ └─saved_model
│     └─variables
└─test_image

模型下載

模型動物園:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

在此處提供了各種各樣的可用於目標檢測的模型供你下載,先選個最簡單的ssd_mobilenet_v1_coco下載試試看效果;

解壓后的目錄結構如下:

|─ssd_mobilenet_v1_coco_2018_01_28
  │ checkpoint
  │ frozen_inference_graph.pb
  │ model.ckpt.data-00000-of-00001
  │ model.ckpt.index
  │ model.ckpt.meta
  │ pipeline.config
  │
  └─saved_model
      │ saved_model.pb
      │
      └─variables

模型配置文件修改

  • data目錄下添加文件face_detection.pbtxt,其中的內容為:

    item {
      name: "face"
      id: 1
    }
    item {
      name: "eye"
      id: 2
    }
    item {
      name: "mouth"
      id: 3
    }

    這里面的id號和之前在csv中給定的id號需保持一致

  • 將模型解壓文件夾中的pipeline.config,復制到training目錄下

  • 進行如下修改:

    • 將文件中的所有PATH_TO_BE_CONFIGURED修改成為自己的對應的文件夾路徑

    # 我修改如下:
    fine_tune_checkpoint: "training/model/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt"
    label_map_path: "training/data/face_detection.pbtxt"
    input_path: "training/data/train.tfrecord"
    label_map_path: "training/data/face_detection.pbtxt"
    input_path: "training/data/test.tfrecord"

    出於引用配置文件的model_main.pyobject_detection目錄下,因此要加上training/

  • num_classes,改為你要識別的類別數,此處為3

  • eval_config下的num_examples修改成你測試集的圖片量,此處為20

至此,配置文件已經修改完成。

模型的訓練

之前所有的鋪墊都是為了此次模型的訓練,也終於要開始對模型進行訓練了。

  • 通過命令nvidia-smi查看可利用的空閑的GPU資源;

  • 通過命令conda activate tensorflow1.12激活之前配置的環境;

  • 進入models/research/object_detection文件夾中,為了方便起見,新建train_cmd.sh

  • 用vim編輯train_cmd.sh,輸入:

    # train
    #! /bin/bash
    CUDA_VISIBLE_DEVICES=1 \                # 指定gpu資源 
    python model_main.py \                  # 需要運行的文件
            --model_dir=training/model \    # 訓練中生成的模型保存的地方
            --pipeline_config_path=training/pipeline.config \   # 配置文件地址
            --num_train_steps=50000         # 訓練的步數
  • 控制終端中輸入bash train_cmd.sh,即開始進行訓練

    • 若出現無法找到object_detection模塊的問題,則回到research目錄下,運行如下語句:

    export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

查看訓練情況

改文件訓練時,並不會輸出loss與accuracy的情況,因此需要通過tensorboard進行查看。

在服務器使用tensorboard的方法:https://blog.csdn.net/sinat_35512245/article/details/82960937

進行上述配置后,進入object_detection文件中,輸入命令:

tensorboard --logdir=./training/model --port=6006

之后在本地的瀏覽器中輸入:localhost:12345即可查看遠程的tensorboard

tensorboard查看情況

  • IMAGES:在這里你可以查看你之前轉換的數據是否正確,例如此時我的數據如下:

     

     

     

  • GRAPHS:圖結構就定義在此處,有毅力有興趣者可以仔細看看數據時如何處理的,模型是如何架構的,方便后期的調參;

  • SCALARS:此處為訓練時的各種參數,例如loss值,learning_rate等參數,以下是經過50000次訓練后的結果圖: 

模型的導出

在完成訓練后,我們需要將訓練生成的模型進行導出操作,將模型導出成為.pd的格式,操作流程如下:

  • object_detection目錄下新建create_pd.sh;

  • 將其中內容修改為:

# use export_inference_graph.py to create .pd file
#! /bin/bash
CUDA_VISIBLE_DEVICES=1 \
python export_inference_graph.py \
        --input_type=image_tensor \
        --pipeline_config_path=./training/pipeline.config \
        --trained_checkpoint_prefix=training/model/model.ckpt-50000 \
        --output_directory=./training/output_model

測試效果在win環境下進行,因此將生成的模型文件再導入到windows下

四、訓練結果測試

測試環境為本人的win10系統,在object_detection目錄下新建了model_test.py文件,代碼內容如下:

import os
import cv2
import sys
import numpy as np
from PIL import Image
import tensorflow as tf
​
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
​
​
# -----------------------------攝像頭類定義----------------------------- #
class Camera(object):
    def __init__(self, channel):
        self.capture = cv2.VideoCapture(channel)
​
        self.fps = int(self.capture.get(cv2.CAP_PROP_FPS))
        self.video_height = int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.video_width = int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH))
​
        self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, self.video_width)
        self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, self.video_height)
        self.capture.set(cv2.CAP_PROP_FPS, self.fps)
​
    def get_image(self):
        """
        獲取圖像
        """
        if self.capture.isOpened():
            ret, frame = self.capture.read()
            if ret is True:
                print('get picture success')
                return frame
            else:
                print('get picture failed')
                return None
​
    def release_camera(self):
        """
        釋放攝像機資源
        """
        self.capture.release()
        cv2.destroyAllWindows()
​
# ------------------------------識別類定義----------------------------- #
class SSD_Model(object):
    def __init__(self, PATH_TO_FROZEN_GRAPH, PATH_TO_LABELS):
        self.PATH_TO_FROZEN_GRAPH = PATH_TO_FROZEN_GRAPH
        # 添加需要識別的標簽
        PATH_TO_LABELS = PATH_TO_LABELS
        self.category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
        self.detection_graph = self.load_model()
​
    def load_model(self):
        # 載入模型文件
        detection_graph = tf.Graph()
        with detection_graph.as_default():
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(self.PATH_TO_FROZEN_GRAPH, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')
        return detection_graph
​
    def run_inference_for_single_image(self, image):
        '''
        對單幅圖像進行推斷
        '''
        graph = self.detection_graph
        with graph.as_default():
            with tf.Session() as sess:
                # Get handles to input and output tensors
                ops = tf.get_default_graph().get_operations()
                all_tensor_names = {output.name for op in ops for output in op.outputs}
                tensor_dict = {}
                for key in [
                    'num_detections', 'detection_boxes', 'detection_scores',
                    'detection_classes', 'detection_masks']:
                    tensor_name = key + ':0'
                    if tensor_name in all_tensor_names:
                        tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
                            tensor_name)
                if 'detection_masks' in tensor_dict:
                    # The following processing is only for single image
                    detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
                    detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
                    # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                    real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
                    detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
                    detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
                    detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                        detection_masks, detection_boxes, image.shape[1], image.shape[2])
                    detection_masks_reframed = tf.cast(
                        tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                    # Follow the convention by adding back the batch dimension
                    tensor_dict['detection_masks'] = tf.expand_dims(
                        detection_masks_reframed, 0)
                image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
​
                # Run inference
                output_dict = sess.run(tensor_dict,
                                       feed_dict={image_tensor: image})
​
                # all outputs are float32 numpy arrays, so convert types as appropriate
                output_dict['num_detections'] = int(output_dict['num_detections'][0])
                output_dict['detection_classes'] = output_dict[
                    'detection_classes'][0].astype(np.int64)
                output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
                output_dict['detection_scores'] = output_dict['detection_scores'][0]
                if 'detection_masks' in output_dict:
                    output_dict['detection_masks'] = output_dict['detection_masks'][0]
        return output_dict
​
​
def main():
    # 開啟攝像頭
    camera = Camera(0)
    # 輸入模型
    recognize = SSD_Model('./training/output_model/frozen_inference_graph.pb',
                          './training/data/face_detection.pbtxt')
​
    while camera.capture.isOpened():
    # if True:
        image = camera.get_image()
        # image = cv2.imread('./training/test_image/007.jpg')
        # the array based representation of the image will be used later in order to prepare the
        # result image with boxes and labels on it.
        image_np = np.array(image)
        # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
        # Actual detection.
        output_dict = recognize.run_inference_for_single_image(image_np_expanded)
        # Visualization of the results of a detection.
        vis_util.visualize_boxes_and_labels_on_image_array(
            image_np,
            output_dict['detection_boxes'],
            output_dict['detection_classes'],
            output_dict['detection_scores'],
            recognize.category_index,
            instance_masks=output_dict.get('detection_masks'),
            use_normalized_coordinates=True,
            line_thickness=2)
​
        cv2.imshow('image', image_np)
        cv2.waitKey(20)
​
​
if __name__ == "__main__":
    main()
​

測試結果效果如下,上一張本人的帥照:-)

可見,訓練出來的結果是有效果的:-)

五、總結

  • 首先感謝Google,封裝了那么健全的庫,能大大縮減開發的時間,提高開發的效率;

  • 本次訓練采用了應該是最為基礎的模型,后續會嘗試更多的模型,比較不同模型之間的效果;

  • 對於訓練的參數為做修改,例如學習率、優化方式等,后續會繼續努力理解代碼,進行修改來達到更好的效果;

參考:

https://blog.csdn.net/dy_guox/article/details/79111949

https://blog.csdn.net/Orienfish/article/details/81199911

https://blog.csdn.net/exploer_try/article/details/81434985

還有些配置之類的參考鏈接在文中已經指出了,因此並未在此列出


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM