AsyncLocal和Async原理解讀


AsyncLocal 的實現很簡單,將AsyncLocal 實例和當前線程的值以鍵值對的形式保存在Thread.CurrentThread.ExecutionContext.m_localValues.中。由於使用[ThreadStatic] 修飾了 Thread.CurrentThread屬性對應的字段,所以實現了多個線程之間各自維護不同的一份數據。同時,在每一次修改AsyncLocal .Value 的時候,都新建了ExecutionContextIAsyncLocalValueMap對象並賦值給當前的線程。

以下為AsyncLocal 的測試代碼

class AsyncLocalTests : Singleton<AsyncLocalTests>,ITestMethod
{
    private readonly AsyncLocal<int> asyncLocalVariable = new AsyncLocal<int>();
    
    public async Task MethodAsync()
    {
        asyncLocalVariable.Value = 88;
        await Task.Run(() =>
        {
            Console.WriteLine($"進入 Task,值:{asyncLocalVariable.Value};線程Id:{Thread.CurrentThread.ManagedThreadId};ExecutionContext:Hashcode:{Thread.CurrentThread.ExecutionContext.GetHashCode()}");
            asyncLocalVariable.Value = 888;
        });
        Console.WriteLine($"await Task 后,值:{asyncLocalVariable.Value};線程Id:{Thread.CurrentThread.ManagedThreadId};ExecutionContext:Hashcode:{Thread.CurrentThread.ExecutionContext.GetHashCode()}");
    }

    public void RunTest()
    {
        asyncLocalVariable.Value = 1;
        Console.WriteLine($"初始值:{asyncLocalVariable.Value};線程Id:{Thread.CurrentThread.ManagedThreadId};ExecutionContext:Hashcode:{Thread.CurrentThread.ExecutionContext.GetHashCode()}");
        MethodAsync();
        Thread.Sleep(1000);
        Console.WriteLine($"async方法后,值:{asyncLocalVariable.Value};線程Id:{Thread.CurrentThread.ManagedThreadId};ExecutionContext:Hashcode:{Thread.CurrentThread.ExecutionContext.GetHashCode()}");
        Console.ReadKey();
    }
}

測試結果

image

從上面的測試結果我們看出:

  1. MethodAsync() 異步方法前后,AsyncLocal .Value 的值相同
  2. await MethodAsync() 異步方法前后,AsyncLocal .Value 的值相同
  3. await Task.Run() 前后代碼塊中,AsyncLocal .Value 的值相同

由於AsyncLocal .Value 是從 Thread.CurrentThread.ExecutionContext 獲取實際的值,那么理解ExecutionContextasync、Task、Thread 的中流動就十分重要。先說結論,並簡單描述一下原因:

1、進入Task.Run()前后,ExecutionContext相同(處於不同線程)

原因:這是因為 Task.Run()Thread.Start() 會捕獲當前線程的 ExecutionContext 傳遞給工作線程,並且在工作線程修改 AsyncLocal .Value 的值, 不會影響原線程的ExecutionContext 。因為每次修改 AsyncLocal .Value 的值,都會新建 ExecutionContext 實例並保存到工作線程

2、 MethodAsync() 前后代碼塊的 ExecutionContext 相同(不使用await)

原因:在狀態機第一次執行前后會備份、恢復ExecutionContext(線程並沒有進行切換)

3、await Task.Run() 前后代碼塊的 ExecutionContext 相同(處於不同線程)

原因:我們知道await Task.Run()肯定位於一個異步方法中,該異步方法會被編譯成一個狀態機,通過狀態的切換,將await前后的代碼分成了兩步來執行。第一次執行由當前線程執行,在開啟新 Task 后、當前線程返回之前,會保存當前線程的 ExecutionContext,供狀態機第二次執行使用(工作線程)。從第一點我們知道新建Task實例的時候會捕獲一次ExecutionContext給工作線程,碰到await返回之前會捕獲一次ExecutionContext給狀態機,這兩次捕獲的實際上是同一個對象。

4、 await MethodAsync() 前后代碼塊的 ExecutionContext 相同(處於不同線程)

原因:在狀態機第一次執行(當前線程)的時候,會捕獲當前線程的 ExecutionContext,供狀態機第二次執行使用(工作線程)。

2. async關鍵字對ExecutionContext的影響

async關鍵字實際上是編譯器的語法糖,可以通過Dnspy 反編譯查看去除語法糖的原始代碼。
Dnspy配置如下,去除勾選"反編譯異步方法(async/await)"

image

原代碼:

public async Task MethodAsyncWithAwait()
{
    asyncLocalVariable.Value = 88;
    await Task.Run(() =>
    {
        asyncLocalVariable.Value = 888;
    });
    asyncLocalVariable.Value = 8888;
}

去除async/await 語法糖代碼:

異步方法代碼:

可以看到編譯器生成了一個實現 IAsyncStateMachine 接口的異步狀態機,並生成了一個私有方法,保存了Task.Run()中的的代碼塊。異步方法中實際上做了以下四個步驟:

  1. 實例化異步狀態機, 將狀態置為 -1
  2. 創建 AsyncTaskMethodBuilder
  3. 通過 AsyncTaskMethodBuilder.Sratr(ref IAsyncStateMachine)啟動狀態機
  4. 返回 Task
public Task MethodAsyncWithAwait()
{
	AsyncLocalTests.<MethodAsyncWithAwait>d__1 <MethodAsyncWithAwait>d__ = new AsyncLocalTests.<MethodAsyncWithAwait>d__1();
	<MethodAsyncWithAwait>d__.<>4__this = this;
	<MethodAsyncWithAwait>d__.<>t__builder = AsyncTaskMethodBuilder.Create();
	<MethodAsyncWithAwait>d__.<>1__state = -1;
	AsyncTaskMethodBuilder <>t__builder = <MethodAsyncWithAwait>d__.<>t__builder;
	<>t__builder.Start<AsyncLocalTests.<MethodAsyncWithAwait>d__1>(ref <MethodAsyncWithAwait>d__);
	return <MethodAsyncWithAwait>d__.<>t__builder.Task;
}

狀態機啟動代碼:

可以看到在執行 stateMachine.MoveNext() 之前備份了當前線程的 _executionContext_synchronizationContext,並且在 finally 代碼塊中恢復了備份的數據。
這樣也就解釋了:在不使用 await 等待異步方法的情況下,雖然在原線程修改了AsyncLocal .Value 的值,但是離開async方法后,我們獲取的還是原來的值。值得注意的是,這里的備份恢復針對的都是當前線程,而不涉及到工作線程。

public void Start<[Nullable(0)] TStateMachine>(ref TStateMachine stateMachine) where TStateMachine : IAsyncStateMachine
{
	AsyncMethodBuilderCore.Start<TStateMachine>(ref stateMachine);
}
internal static class AsyncMethodBuilderCore
{
[DebuggerStepThrough]
public static void Start<TStateMachine>(ref TStateMachine stateMachine) where TStateMachine : IAsyncStateMachine
{
	if (stateMachine == null)
	{
		ThrowHelper.ThrowArgumentNullException(ExceptionArgument.stateMachine);
	}
	Thread currentThread = Thread.CurrentThread;
	Thread thread = currentThread;
	ExecutionContext executionContext = currentThread._executionContext;
	ExecutionContext executionContext2 = executionContext;
	SynchronizationContext synchronizationContext = currentThread._synchronizationContext;
	try
	{
		stateMachine.MoveNext();
	}
	finally
	{
		SynchronizationContext synchronizationContext2 = synchronizationContext;
		Thread thread2 = thread;
		if (synchronizationContext2 != thread2._synchronizationContext)
		{
			thread2._synchronizationContext = synchronizationContext2;
		}
		ExecutionContext executionContext3 = executionContext2;
		ExecutionContext executionContext4 = thread2._executionContext;
		if (executionContext3 != executionContext4)
		{
			ExecutionContext.RestoreChangedContextToThread(thread2, executionContext3, executionContext4);
		}
	}
}

狀態機代碼:

實際上編譯器將標記為 async 的方法分成了兩部分,一部分是 await 之前的代碼(包括新建並啟動啟動Task部分),另一部分是 await之后的代碼。通過狀態的改變,這兩部分代碼分兩次執行。如果沒有使用await修飾異步方法,那么該狀態機沒有 else代碼塊, 只會執行一次stateMachine.MoveNext()。可以看到在第一次執行stateMachine.MoveNext() 之后,當前線程就直接返回了,然后一層層的返回到最外層。這也是為什么說碰到await之后,當前線程就直接返回,當然最內層的返回是在開啟新Task之后。

[CompilerGenerated]
private void <MethodAsyncWithAwait>b__1_0()
{
	this.asyncLocalVariable.Value = 888;
}

[CompilerGenerated]
private sealed class <MethodAsyncWithAwait>d__1 : IAsyncStateMachine
{
	void IAsyncStateMachine.MoveNext()
	{
		int num = this.<>1__state;
		try
		{
			TaskAwaiter awaiter;
			if (num != 0)
			{
				this.<>4__this.asyncLocalVariable.Value = 88;
				awaiter = Task.Run(new Action(this.<>4__this.<MethodAsyncWithAwait>b__1_0)).GetAwaiter();
				if (!awaiter.IsCompleted)
				{
					this.<>1__state = 0;
					this.<>u__1 = awaiter;
					AsyncLocalTests.<MethodAsyncWithAwait>d__1 <MethodAsyncWithAwait>d__ = this;
					this.<>t__builder.AwaitUnsafeOnCompleted<TaskAwaiter, AsyncLocalTests.<MethodAsyncWithAwait>d__1>(ref awaiter, ref <MethodAsyncWithAwait>d__);
					return;
				}
			}
			else
			{
				awaiter = this.<>u__1;
				this.<>u__1 = default(TaskAwaiter);
				this.<>1__state = -1;
			}
			awaiter.GetResult();
			this.<>4__this.asyncLocalVariable.Value = 8888;
		}
		catch (Exception exception)
		{
			this.<>1__state = -2;
			this.<>t__builder.SetException(exception);
			return;
		}
		this.<>1__state = -2;
		this.<>t__builder.SetResult();
	}
	[DebuggerHidden]
	void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine)
	{
	}

	public int <>1__state;

	public AsyncTaskMethodBuilder <>t__builder;

	public AsyncLocalTests <>4__this;

	private TaskAwaiter <>u__1;
}

我們可以看到在第一次執行stateMachine.MoveNext()的時候,會通過當前線程執行 await 之前的代碼塊,並通過Task.Run()啟用工作線程去完成任務。IAsyncStateMachine.MoveNext() 里面有三句代碼比較重要,這里先大概描述一下作用:

1、 Task.Run():

新建Task實例、捕獲當前線程的ExecutionContext 保存到Task實例中、啟動新任務

2、 AsyncTaskMethodBuilder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine):

將狀態機和當前線程的上下文包裝成 AsyncStateMachineBox:Task 對象,保存到在 Task(第一步新建的 Task實例).m_continuationObject 字段中,最后將其傳遞到 stateMachine.AsyncTaskMethodBuilder.Task屬性中, 這樣外層狀態機可以通過MethodAsync().GetAwaiter().m_task獲取到內層狀態機的AsyncStateMachineBox:Task 對象,同樣的外層狀態機再次執行本步驟,將自身的 AsyncStateMachineBox:Task 對象賦值給內層 AsyncStateMachineBox:Task 對象的 m_continuationObject字段,這樣的話,就構建了一個單向鏈表,該鏈表保存了每一層異步方法的stateMachineExecutionContext

3、 this.<>t__builder.SetResult():

設置異步方法的結果,並檢查 Task.m_continuationObject 是否為空,不為空的情況下,執行外層狀態機的第二次 stateMachine.MoveNext()。最內層 Task.m_continuationObject的執行會在Task完成之后調用,接下來通過SetResult()一層層調用了外層狀態機的第二次 stateMachine.MoveNext()

3. AwaitUnsafeOnCompleted() 代碼分析

以下只放出了簡化的代碼。這里首先構建 IAsyncStateMachineBox實例,並將其賦值給 m_task 供外層狀態機使用。IAsyncStateMachineBox實例保存了本層的狀態機,並捕獲了當前線程的ExecutionContextawaiter.m_task 是調用內層異步方法返回的 Task實例。最后在 TaskAwaiter.UnsafeOnCompletedInternal() 方法中,將構建的IAsyncStateMachineBox實例保存到 awaiter(內層).m_task.m_continuationObject字段中,使得內層狀態機指向本層狀態機。因為每一層狀態機都會調用AwaitUnsafeOnCompleted 方法,所以一層層構建了 await 后的所有回調,並且每一層回調的 ExecutionContext 都不同。

public void AwaitUnsafeOnCompleted<TAwaiter, TStateMachine>(ref TAwaiter awaiter, ref TStateMachine stateMachine)
    where TAwaiter : ICriticalNotifyCompletion where TStateMachine : IAsyncStateMachine
{
    IAsyncStateMachineBox box = GetStateMachineBox(ref stateMachine);

    if ((null != (object)default(TAwaiter)!) && (awaiter is ITaskAwaiter))
    {
        ref TaskAwaiter ta = ref Unsafe.As<TAwaiter, TaskAwaiter>(ref awaiter);
        TaskAwaiter.UnsafeOnCompletedInternal(ta.m_task, box, continueOnCapturedContext: true);
    }
}
private IAsyncStateMachineBox GetStateMachineBox<TStateMachine>(ref TStateMachine stateMachine) where TStateMachine : IAsyncStateMachine
{
    ExecutionContext? currentContext = ExecutionContext.Capture();

    AsyncStateMachineBox<TStateMachine> box = AsyncMethodBuilderCore.TrackAsyncMethodCompletion ?
        CreateDebugFinalizableAsyncStateMachineBox<TStateMachine>() :
        new AsyncStateMachineBox<TStateMachine>();
    m_task = box;
    box.StateMachine = stateMachine;
    box.Context = currentContext;
	
    return box;
}

4. SetResult() 代碼分析

該方法最后調用了 Task .TrySetResult() 方法,讀取了Task.m_continuationObject 來獲取外一層的回調(包括狀態機、ExecutionContext),並通過FinishContinuations()執行外層狀態機的第二次執行。

internal bool TrySetResult([AllowNull] TResult result)
{
	bool result2 = false;
	if (base.AtomicStateUpdate(67108864, 90177536))
	{
		this.m_result = result;
		Interlocked.Exchange(ref this.m_stateFlags, this.m_stateFlags | 16777216);
		Task.ContingentProperties contingentProperties = this.m_contingentProperties;
		if (contingentProperties != null)
		{
			base.NotifyParentIfPotentiallyAttachedTask();
			contingentProperties.SetCompleted();
		}
		base.FinishContinuations();
		result2 = true;
	}
	return result2;
}

FinishContinuations() 方法接下來的調用在 Task.Run() 部分會有介紹。

internal void FinishContinuations()
{
	object obj = Interlocked.Exchange(ref this.m_continuationObject, Task.s_taskCompletionSentinel);
	if (obj != null)
	{
		this.RunContinuations(obj);
	}
}

5. Task.Run() 代碼分析

實際上在Task.Run()內部也是先新建一個Task 實例,然后通過Task.ScheduleAndStart()方法來調度並啟動任務。兩者的區別在於傳入的Optionsscheduler 是不相同的。

var task1 = Task.Run(() => { });
//默認配置無法更改: InternalTaskOptions.QueuedByRuntime, TaskCreationOptions.DenyChildAttach, TaskScheduler.Default
//t.ScheduleAndStart(false);
var task2 = new Task(() => { }, TaskCreationOptions.LongRunning);
//默認配置可以修改: InternalTaskOptions.None, TaskCreationOptions.None, scheduler:null
task2.Start();
//可以傳入scheduler 
//默認使用TaskScheduler.Current: 先取[ThreadStatic]Task.InternalCurrent,如果為空取 TaskScheduler.Default
//t.ScheduleAndStart(true);

通過在Task的構造函數中調用ExecutionContext.Capture() 方法來保存當前線程的ExecutionContextTask實例中,這樣的話,只要將到Task實例作為參數傳入到工作線程中,工作線程就可以獲取到ExecutionContext

internal Task(Delegate action, object state, Task parent, CancellationToken cancellationToken, TaskCreationOptions creationOptions, InternalTaskOptions internalOptions, TaskScheduler scheduler)
{
	if (action == null)
	{
		ThrowHelper.ThrowArgumentNullException(ExceptionArgument.action);
	}
	if (parent != null && (creationOptions & TaskCreationOptions.AttachedToParent) != TaskCreationOptions.None)
	{
		this.EnsureContingentPropertiesInitializedUnsafe().m_parent = parent;
	}
	this.TaskConstructorCore(action, state, cancellationToken, creationOptions, internalOptions, scheduler);
	this.CapturedContext = ExecutionContext.Capture();
}

Task.ScheduleAndStart()方法:

Task的調度分兩種情況:1、配置了TaskCreationOptions.LongRunningTask實例直接新建一個后台 Thread,並將Task實例作為啟動參數來啟動工作線程;2、對於沒有配置TaskCreationOptions.LongRunningTask實例,將其加入ThreadPool的線程池,由線程池來調度運行

internal sealed class ThreadPoolTaskScheduler : TaskScheduler
{
    protected internal override void QueueTask(Task task)
    {
        TaskCreationOptions options = task.Options;
        if ((options & TaskCreationOptions.LongRunning) != 0)
        {
            // Run LongRunning tasks on their own dedicated thread.
            Thread thread = new Thread(s_longRunningThreadWork);
            thread.IsBackground = true; // Keep this thread from blocking process shutdown
            thread.Start(task);
        }
        else
        {
            // Normal handling for non-LongRunning tasks.
            bool preferLocal = ((options & TaskCreationOptions.PreferFairness) == 0);
            ThreadPool.UnsafeQueueUserWorkItemInternal(task, preferLocal);
        }
    }
}

雖然已經在Task的構造函數中,捕獲了ExecutionContext,但是對於直接新建的Thread實例,啟動的時候同樣也需要捕獲當前線程的ExecutionContext

public void Start()
{
	this.StartupSetApartmentStateInternal();
	if (this._delegate != null)
	{
		ThreadHelper threadHelper = (ThreadHelper)this._delegate.Target;
		ExecutionContext executionContextHelper = ExecutionContext.Capture();
		threadHelper.SetExecutionContextHelper(executionContextHelper);
	}
	this.StartInternal();
}

線程池調度Task、IThreadPoolWorkItem邏輯:

從線程池取出工作線程,工作線程調用Dispatch()方法,對於IThreadPoolWorkItem,直接執行IThreadPoolWorkItem.Execute() 方法,所以線程池處理IThreadPoolWorkItem是不涉及到上下文切換的。對於 Task ,將ExecutionContext賦值給工作線程,調用委托,然后清除工作線程的上下文,最后調用Finish(true) 來執行任務完成的回調方法。調用鏈路很長,這里直接跳到RunContinuations()方法。

調用鏈路:

    // 最內層 async 狀態機 執行await Task.Run()之后的代碼塊
    //=>Task.Finish(true);
    //=>FinishStageTwo();
    //===>FinishStageThree();
    //=====>FinishContinuations();
    //=======>RunContinuations(continuationObject);
    //=========>AwaitTaskContinuation.RunOrScheduleAction(asyncStateMachineBox, flag); 狀態機的回調執行這個
    //==========>box.ExecuteFromThreadPool(threadPoolThread); 或者 box.MoveNext();

我們知道,異步方法的最內層肯定有一個 await Task。 正是Task.Finish(true)這個方法調用了最內層狀態機,去執行第二次stateMachine.MoveNext()方法,並且在MoveNext()方法中都會調用SetResult() 方法,從而觸發外層狀態機的第二次stateMachine.MoveNext()執行,就這樣一層層的調用完成了所有的層次的回調。可以看到,工作線程在執行 await Task.Run()/MethodAsnc() 后代碼塊時,傳入的是在 AwaitUnsafeOnCompleted() 方法中捕獲的 ExecutionContext
s_callback字段保存了狀態機的MoveNext()方法。

private class AsyncStateMachineBox<TStateMachine> :Task<TResult>,IAsyncStateMachineBox  where TStateMachine : IAsyncStateMachine
{
    private static readonly ContextCallback s_callback = ExecutionContextCallback;

    private static void ExecutionContextCallback(object? s)
    {
        Unsafe.As<AsyncStateMachineBox<TStateMachine>>(s).StateMachine!.MoveNext();
    }

    public TStateMachine StateMachine = default; 
    
    public ExecutionContext? Context;

    internal sealed override void ExecuteFromThreadPool(Thread threadPoolThread) => MoveNext(threadPoolThread);
    	internal sealed override void ExecuteFromThreadPool(Thread threadPoolThread) => MoveNext(threadPoolThread);

	public void MoveNext() => MoveNext(threadPoolThread: null);

	private void MoveNext(Thread? threadPoolThread)
	{
		bool loggingOn = AsyncCausalityTracer.LoggingOn;
		if (loggingOn)
		{
			AsyncCausalityTracer.TraceSynchronousWorkStart(this, CausalitySynchronousWork.Execution);
		}

		ExecutionContext? context = Context;
		if (context == null)
		{
			Debug.Assert(StateMachine != null);
			StateMachine.MoveNext();
		}
		else
		{
			if (threadPoolThread is null)
			{
				ExecutionContext.RunInternal(context, s_callback, this);
			}
			else
			{
				ExecutionContext.RunFromThreadPoolDispatchLoop(threadPoolThread, context, s_callback, this);
			}
		}

		if (IsCompleted)
		{
			if (System.Threading.Tasks.Task.s_asyncDebuggingEnabled)
			{
				System.Threading.Tasks.Task.RemoveFromActiveTasks(this);
			}
			StateMachine = default;
			Context = default;
		}

		if (loggingOn)
		{
			AsyncCausalityTracer.TraceSynchronousWorkCompletion(CausalitySynchronousWork.Execution);
		}
	}
}

最后在 RunInternalRunFromThreadPoolDispatchLoop 中,都會使用在AwaitUnsafeOnCompleted()方法里面捕獲的 ExecutionContext,這也就解釋了為什么在 await Task.Run()/MethodAsync() 前后的代碼塊中,ExecutionContext始終相同。需要注意的一點是,不管在Task 任務執行之后,還是 await 回調執行之后,都會把工作線程的上下文清空。

internal static void RunFromThreadPoolDispatchLoop(Thread threadPoolThread, ExecutionContext executionContext, ContextCallback callback, object state)
{
	if (executionContext != null && !executionContext.m_isDefault)
	{
		ExecutionContext.RestoreChangedContextToThread(threadPoolThread, executionContext, null);
	}
	ExceptionDispatchInfo exceptionDispatchInfo = null;
	try
	{
		callback(state);
	}
	catch (Exception source)
	{
		exceptionDispatchInfo = ExceptionDispatchInfo.Capture(source);
	}
	ExecutionContext executionContext2 = threadPoolThread._executionContext;
	threadPoolThread._synchronizationContext = null;
	if (executionContext2 != null)
	{
		ExecutionContext.RestoreChangedContextToThread(threadPoolThread, null, executionContext2);
	}
	if (exceptionDispatchInfo != null)
	{
		exceptionDispatchInfo.Throw();
	}
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM