https://blog.csdn.net/LuYi_WeiLin/article/details/87968830 轉載
淺談行為評分卡
我們知道行為評分卡只要用在信貸的貸中環節,貸中指的是貸款發放之后到期之前的時間段,其實行為評分卡和申請評分卡在實現上沒有太大的差別,主要是數據集不一樣。因為前一篇博客已經介紹過行為評分卡,這里就不過多去討論了,主要以代碼為主
行為評分卡建模步驟
數據預處理
特征衍生
特征處理與篩選
變量分箱
模型的參數估計
特征挑選
模型性能測試
概率轉換為分數
代碼如下:
和申請評分卡代碼有一些不同的地方在於,由於行為邏輯回歸結果后有存在符號為正的系數和不顯著的變量,變量挑選使用了GBDT評估重要性和LASSO。由於數據集不一樣,代碼中可能后面有一些變量挑選的地方對不上,不過整體代碼是沒有問題的,思路和流程在代碼中均可以體現,數據集可以在我的博客資源下載。
import pandas as pd import numpy as np import pickle from statsmodels.stats.outliers_influence import variance_inflation_factor import statsmodels.api as sm from sklearn import ensemble import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import roc_auc_score ################################# #由於數據已經經過一定的清洗了,非一手數據,所以我們忽略了一些步驟,進行變量衍生 # 1, 讀取數據,衍生初始變量 # ''' Loan_Amount:總額度 OS:未還金額 Payment:還款金額 Spend:使用金額 Delq:逾期情況 ''' ################################# folderOfData = 'H:' trainData = pd.read_csv(folderOfData+'/訓練集.csv',header = 0,engine ='python') testData = pd.read_csv(folderOfData+'/測試集.csv',header = 0,engine ='python') #衍生逾期類型的特征的函數 def DelqFeatures(event,window,type): ''' :parms event 數據框 :parms windows 時間窗口 :parms type 響應事件類型 ''' current = 12 start = 12 - window + 1 #delq1、delq2、delq3為了獲取window相對應的dataframe范圍 delq1 = [event[a] for a in ['Delq1_' + str(t) for t in range(current, start - 1, -1)]] delq2 = [event[a] for a in ['Delq2_' + str(t) for t in range(current, start - 1, -1)]] delq3 = [event[a] for a in ['Delq3_' + str(t) for t in range(current, start - 1, -1)]] if type == 'max delq': if max(delq3) == 1: return 3 elif max(delq2) == 1: return 2 elif max(delq1) == 1: return 1 else: return 0 if type in ['M0 times','M1 times', 'M2 times']: if type.find('M0')>-1: return sum(delq1) elif type.find('M1')>-1: return sum(delq2) else: return sum(delq3) allFeatures = [] ''' 逾期類型的特征在行為評分卡(預測違約行為)中,一般是非常顯著的變量。 通過設定時間窗口,可以衍生以下類型的逾期變量: ''' # 考慮過去1個月,3個月,6個月,12個月 for t in [1,3,6,12]: # 1,過去t時間窗口內的最大逾期狀態 allFeatures.append('maxDelqL'+str(t)+"M") trainData['maxDelqL'+str(t)+"M"] = trainData.apply(lambda x: DelqFeatures(x,t,'max delq'),axis=1) # 2,過去t時間窗口內的,M0,M1,M2的次數 allFeatures.append('M0FreqL' + str(t) + "M") trainData['M0FreqL' + str(t) + "M"] = trainData.apply(lambda x: DelqFeatures(x,t,'M0 times'),axis=1) allFeatures.append('M1FreqL' + str(t) + "M") trainData['M1FreqL' + str(t) + "M"] = trainData.apply(lambda x: DelqFeatures(x, t, 'M1 times'), axis=1) allFeatures.append('M2FreqL' + str(t) + "M") trainData['M2FreqL' + str(t) + "M"] = trainData.apply(lambda x: DelqFeatures(x, t, 'M2 times'), axis=1) #衍生額度使用率類型特征的函數 def UrateFeatures(event, window, type): ''' :parms event 數據框 :parms windows 時間窗口 :parms type 響應事件類型 ''' current = 12 start = 12 - window + 1 #獲取在數據框內有效區域 monthlySpend = [event[a] for a in ['Spend_' + str(t) for t in range(current, start - 1, -1)]] #獲取授信總額度 limit = event['Loan_Amount'] #月使用率 monthlyUrate = [x / limit for x in monthlySpend] if type == 'mean utilization rate': return np.mean(monthlyUrate) if type == 'max utilization rate': return max(monthlyUrate) #月額度使用率增加的月份 if type == 'increase utilization rate': #val[0:-1]表示第一個元素到倒數第二個元素的切片 currentUrate = monthlyUrate[0:-1] #val[1:]表示第二個元素到最后一個元素的切片 previousUrate = monthlyUrate[1:] compareUrate = [int(x[0]>x[1]) for x in zip(currentUrate,previousUrate)] return sum(compareUrate) ''' 額度使用率類型特征在行為評分卡模型中,通常是與違約高度相關的 ''' # 考慮過去1個月,3個月,6個月,12個月 for t in [1,3,6,12]: # 1,過去t時間窗口內的最大月額度使用率 allFeatures.append('maxUrateL' + str(t) + "M") trainData['maxUrateL' + str(t) + "M"] = trainData.apply(lambda x: UrateFeatures(x,t,'max utilization rate'),axis = 1) # 2,過去t時間窗口內的平均月額度使用率 allFeatures.append('avgUrateL' + str(t) + "M") trainData['avgUrateL' + str(t) + "M"] = trainData.apply(lambda x: UrateFeatures(x, t, 'mean utilization rate'),axis=1) # 3,過去t時間窗口內,月額度使用率增加的月份。該變量要求t>1 if t > 1: allFeatures.append('increaseUrateL' + str(t) + "M") trainData['increaseUrateL' + str(t) + "M"] = trainData.apply(lambda x: UrateFeatures(x, t, 'increase utilization rate'),axis=1) #衍生還款類型特征的函數 def PaymentFeatures(event, window, type): current = 12 start = 12 - window + 1 #月還款金額 currentPayment = [event[a] for a in ['Payment_' + str(t) for t in range(current, start - 1, -1)]] #月使用金額,錯位一下 previousOS = [event[a] for a in ['OS_' + str(t) for t in range(current-1, start - 2, -1)]] monthlyPayRatio = [] for Pay_OS in zip(currentPayment,previousOS): #前一個月使用了才會產生還款 if Pay_OS[1]>0: payRatio = Pay_OS[0]*1.0 / Pay_OS[1] monthlyPayRatio.append(payRatio) #前一個月沒使用,就按照100%還款 else: monthlyPayRatio.append(1) if type == 'min payment ratio': return min(monthlyPayRatio) if type == 'max payment ratio': return max(monthlyPayRatio) if type == 'mean payment ratio': total_payment = sum(currentPayment) total_OS = sum(previousOS) if total_OS > 0: return total_payment / total_OS else: return 1 ''' 還款類型特征也是行為評分卡模型中常用的特征 ''' # 考慮過去1個月,3個月,6個月,12個月 for t in [1,3,6,12]: # 1,過去t時間窗口內的最大月還款率 allFeatures.append('maxPayL' + str(t) + "M") trainData['maxPayL' + str(t) + "M"] = trainData.apply(lambda x: PaymentFeatures(x, t, 'max payment ratio'),axis=1) # 2,過去t時間窗口內的最小月還款率 allFeatures.append('minPayL' + str(t) + "M") trainData['minPayL' + str(t) + "M"] = trainData.apply(lambda x: PaymentFeatures(x, t, 'min payment ratio'),axis=1) # 3,過去t時間窗口內的平均月還款率 allFeatures.append('avgPayL' + str(t) + "M") trainData['avgPayL' + str(t) + "M"] = trainData.apply(lambda x: PaymentFeatures(x, t, 'mean payment ratio'),axis=1) ###函數######## #計算變量分箱之后各分箱的壞樣本率 def BinBadRate(df, col, target, grantRateIndicator=0): ''' :param df: 需要計算好壞比率的數據集 :param col: 需要計算好壞比率的特征 :param target: 好壞標簽 :param grantRateIndicator: 1返回總體的壞樣本率,0不返回 :return: 每箱的壞樣本率,以及總體的壞樣本率(當grantRateIndicator==1時) ''' #print(df.groupby([col])[target]) total = df.groupby([col])[target].count() #print(total) total = pd.DataFrame({'total': total}) #print(total) bad = df.groupby([col])[target].sum() bad = pd.DataFrame({'bad': bad}) #合並 regroup = total.merge(bad, left_index=True, right_index=True, how='left') #print(regroup) regroup.reset_index(level=0, inplace=True) #print(regroup) #計算壞樣本率 regroup['bad_rate'] = regroup.apply(lambda x: x.bad * 1.0 / x.total, axis=1) #print(regroup) #生成字典,(變量名取值:壞樣本率) dicts = dict(zip(regroup[col],regroup['bad_rate'])) if grantRateIndicator==0: return (dicts, regroup) N = sum(regroup['total']) B = sum(regroup['bad']) #總體樣本率 overallRate = B * 1.0 / N return (dicts, regroup, overallRate) ## 判斷某變量的壞樣本率是否單調 def BadRateMonotone(df, sortByVar, target,special_attribute = []): ''' :param df: 包含檢驗壞樣本率的變量,和目標變量 :param sortByVar: 需要檢驗壞樣本率的變量 :param target: 目標變量,0、1表示好、壞 :param special_attribute: 不參與檢驗的特殊值 :return: 壞樣本率單調與否 ''' df2 = df.loc[~df[sortByVar].isin(special_attribute)] if len(set(df2[sortByVar])) <= 2: return True regroup = BinBadRate(df2, sortByVar, target)[1] combined = zip(regroup['total'],regroup['bad']) badRate = [x[1]*1.0/x[0] for x in combined] badRateNotMonotone = [badRate[i]<badRate[i+1] and badRate[i] < badRate[i-1] or badRate[i]>badRate[i+1] and badRate[i] > badRate[i-1] for i in range(1,len(badRate)-1)] if True in badRateNotMonotone: return False else: return True ############################ # 2, 分箱,計算WOE並編碼 # ############################ ''' 對類別型變量的分箱和WOE計算 可以通過計算取值個數的方式判斷是否是類別型變量 ''' #類別型變量 categoricalFeatures = [] #連續型變量 numericalFeatures = [] WOE_IV_dict = {} for var in allFeatures: if len(set(trainData[var])) > 5: numericalFeatures.append(var) else: categoricalFeatures.append(var) not_monotone =[] for var in categoricalFeatures: #檢查bad rate在箱中的單調性 if not BadRateMonotone(trainData, var, 'label'): not_monotone.append(var) #print("數值取值小於5類別型變量{}壞樣本率不單調".format(not_monotone)) # 'M1FreqL3M','M2FreqL3M', 'maxDelqL12M' 是不單調的,需要合並其中某些類別 trainData.groupby(['M2FreqL3M'])['label'].mean() #檢查單調性 trainData.groupby(['M2FreqL3M'])['label'].count() #其中,M2FreqL3M=3總共只有3個樣本,因此要進行合並 # 將 M2FreqL3M>=1的合並為一組,計算WOE和IV trainData['M2FreqL3M_Bin'] = trainData['M2FreqL3M'].apply(lambda x: int(x>=1)) trainData.groupby(['M2FreqL3M_Bin'])['label'].mean() #計算WOE值 def CalcWOE(df, col, target): ''' :param df: 包含需要計算WOE的變量和目標變量 :param col: 需要計算WOE、IV的變量,必須是分箱后的變量,或者不需要分箱的類別型變量 :param target: 目標變量,0、1表示好、壞 :return: 返回WOE和IV ''' total = df.groupby([col])[target].count() total = pd.DataFrame({'total': total}) bad = df.groupby([col])[target].sum() bad = pd.DataFrame({'bad': bad}) regroup = total.merge(bad, left_index=True, right_index=True, how='left') regroup.reset_index(level=0, inplace=True) N = sum(regroup['total']) B = sum(regroup['bad']) regroup['good'] = regroup['total'] - regroup['bad'] G = N - B regroup['bad_pcnt'] = regroup['bad'].map(lambda x: x*1.0/B) regroup['good_pcnt'] = regroup['good'].map(lambda x: x * 1.0 / G) regroup['WOE'] = regroup.apply(lambda x: np.log(x.good_pcnt*1.0/x.bad_pcnt),axis = 1) WOE_dict = regroup[[col,'WOE']].set_index(col).to_dict(orient='index') for k, v in WOE_dict.items(): WOE_dict[k] = v['WOE'] IV = regroup.apply(lambda x: (x.good_pcnt-x.bad_pcnt)*np.log(x.good_pcnt*1.0/x.bad_pcnt),axis = 1) IV = sum(IV) return {"WOE": WOE_dict, 'IV':IV} WOE_IV_dict['M2FreqL3M_Bin'] = CalcWOE(trainData, 'M2FreqL3M_Bin', 'label') trainData.groupby(['M1FreqL3M'])['label'].mean() #檢查單調性 trainData.groupby(['M1FreqL3M'])['label'].count() # 除了M1FreqL3M=3外, 其他組別的bad rate單調。 # 此外,M1FreqL3M=0 占比很大,因此將M1FreqL3M>=1的分為一組 trainData['M1FreqL3M_Bin'] = trainData['M1FreqL3M'].apply(lambda x: int(x>=1)) trainData.groupby(['M1FreqL3M_Bin'])['label'].mean() WOE_IV_dict['M1FreqL3M_Bin'] = CalcWOE(trainData, 'M1FreqL3M_Bin', 'label') ''' 對其他單調的類別型變量,檢查是否有一箱的占比低於5%。 如果有,將該變量進行合並 ''' small_bin_var = [] large_bin_var = [] N = trainData.shape[0] for var in categoricalFeatures: if var not in not_monotone: total = trainData.groupby([var])[var].count() pcnt = total * 1.0 / N if min(pcnt)<0.05: small_bin_var.append({var:pcnt.to_dict()}) else: large_bin_var.append(var) #對於M2FreqL1M、M2FreqL6M和M2FreqL12M,由於有部分箱占了很大比例,故刪除,因為樣本表現99%都一樣,這個變量沒有區分度 allFeatures.remove('M2FreqL1M') allFeatures.remove('M2FreqL6M') allFeatures.remove('M2FreqL12M') def MergeByCondition(x,condition_list): #condition_list是條件列表。滿足第幾個condition,就輸出幾 s = 0 for condition in condition_list: if eval(str(x)+condition): return s else: s+=1 return s #對於small_bin_var中的其他變量,將最小的箱和相鄰的箱進行合並並計算WOE trainData['maxDelqL1M_Bin'] = trainData['maxDelqL1M'].apply(lambda x: MergeByCondition(x,['==0','==1','>=2'])) trainData['maxDelqL3M_Bin'] = trainData['maxDelqL3M'].apply(lambda x: MergeByCondition(x,['==0','==1','>=2'])) trainData['maxDelqL6M_Bin'] = trainData['maxDelqL6M'].apply(lambda x: MergeByCondition(x,['==0','==1','>=2'])) for var in ['maxDelqL1M_Bin','maxDelqL3M_Bin','maxDelqL6M_Bin']: WOE_IV_dict[var] = CalcWOE(trainData, var, 'label') ''' 對於不需要合並、原始箱的bad rate單調的特征,直接計算WOE和IV ''' for var in large_bin_var: WOE_IV_dict[var] = CalcWOE(trainData, var, 'label') def AssignBin(x, cutOffPoints,special_attribute=[]): ''' :param x: 某個變量的某個取值 :param cutOffPoints: 上述變量的分箱結果,用切分點表示 :param special_attribute: 不參與分箱的特殊取值 :return: 分箱后的對應的第幾個箱,從0開始 for example, if cutOffPoints = [10,20,30], if x = 7, return Bin 0. If x = 35, return Bin 3 ''' numBin = len(cutOffPoints) + 1 + len(special_attribute) if x in special_attribute: i = special_attribute.index(x)+1 return 'Bin {}'.format(0-i) if x<=cutOffPoints[0]: return 'Bin 0' elif x > cutOffPoints[-1]: return 'Bin {}'.format(numBin-1) else: for i in range(0,numBin-1): if cutOffPoints[i] < x <= cutOffPoints[i+1]: return 'Bin {}'.format(i+1) def AssignGroup(x, bin): ''' :param x: 某個變量的某個取值 :param bin: 上述變量的分箱結果 :return: x在分箱結果下的映射 ''' N = len(bin) if x<=min(bin): return min(bin) elif x>max(bin): return 10e10 else: for i in range(N-1): if bin[i] < x <= bin[i+1]: return bin[i+1] def SplitData(df, col, numOfSplit, special_attribute=[]): ''' :param df: 按照col排序后的數據集 :param col: 待分箱的變量 :param numOfSplit: 切分的組別數 :param special_attribute: 在切分數據集的時候,某些特殊值需要排除在外 :return: 在原數據集上增加一列,把原始細粒度的col重新划分成粗粒度的值,便於分箱中的合並處理 ''' df2 = df.copy() if special_attribute != []: df2 = df.loc[~df[col].isin(special_attribute)] N = df2.shape[0]#行數 #" / "就表示 浮點數除法,返回浮點結果;" // "表示整數除法 n = N//numOfSplit #每組樣本數 splitPointIndex = [i*n for i in range(1,numOfSplit)] #分割點的下標 ''' [i*2 for i in range(1,100)] [2, 4, 6, 8, 10,......,198] ''' rawValues = sorted(list(df2[col])) #對取值進行排序 #取到粗糙卡方划分節點 splitPoint = [rawValues[i] for i in splitPointIndex] #分割點的取值 splitPoint = sorted(list(set(splitPoint))) return splitPoint #計算卡方值的函數 def Chi2(df, total_col, bad_col, overallRate): ''' :param df: 包含全部樣本總計與壞樣本總計的數據框 :param total_col: 全部樣本的個數 :param bad_col: 壞樣本的個數 :param overallRate: 全體樣本的壞樣本占比 :return: 卡方值 ''' df2 = df.copy() # 期望壞樣本個數=全部樣本個數*平均壞樣本占比 df2['expected'] = df[total_col].apply(lambda x: x*overallRate) combined = zip(df2['expected'], df2[bad_col]) chi = [(i[0]-i[1])**2/i[0] for i in combined] chi2 = sum(chi) return chi2 ##ChiMerge_MaxInterval:通過指定最大間隔數,使用卡方值分割連續變量 def ChiMerge(df, col, target, max_interval=5,special_attribute=[],minBinPcnt=0): ''' :param df: 包含目標變量與分箱屬性的數據框 :param col: 需要分箱的屬性 :param target: 目標變量,取值0或1 :param max_interval: 最大分箱數。如果原始屬性的取值個數低於該參數,不執行這段函數 :param special_attribute: 不參與分箱的屬性取值,缺失值的情況 :param minBinPcnt:最小箱的占比,默認為0 :return: 分箱結果 ''' colLevels = sorted(list(set(df[col]))) N_distinct = len(colLevels)#不同的取值個數 if N_distinct <= max_interval: #如果原始屬性的取值個數低於max_interval,不執行這段函數 print ("原始屬性{}的取值個數低於max_interval".format(col)) #分箱分數間隔段,少一個值也可以 #返回值colLevels會少一個最大值 return colLevels[:-1] else: if len(special_attribute)>=1: #df1數據框取trainData中col那一列為特殊值的數據集 #df1 = df.loc[df[col].isin(special_attribute)] print('{} 有缺失值的情況'.format(col)) #用逆函數對篩選后的結果取余,起刪除指定行作用 df2 = df.loc[~df[col].isin(special_attribute)] else: df2 = df.copy() N_distinct = len(list(set(df2[col])))#該特征不同的取值 # 步驟一: 通過col對數據集進行分組,求出每組的總樣本數與壞樣本數 if N_distinct > 100: ''' split_x樣例 [2, 8, 9.3 , 1 0, 30 ,......,1800] ''' split_x = SplitData(df2, col, 100) #把值變為划分點的值 df2['temp'] = df2[col].map(lambda x: AssignGroup(x, split_x)) else: #假如數值取值小於100就不發生變化了 df2['temp'] = df2[col] # 總體bad rate將被用來計算expected bad count (binBadRate, regroup, overallRate) = BinBadRate(df2, 'temp', target, grantRateIndicator=1) # 首先,每個單獨的屬性值將被分為單獨的一組 # 對屬性值進行排序,然后兩兩組別進行合並 colLevels = sorted(list(set(df2['temp']))) groupIntervals = [[i] for i in colLevels] # 步驟二:建立循環,不斷合並最優的相鄰兩個組別,直到: # 1,最終分裂出來的分箱數<=預設的最大分箱數 # 2,每箱的占比不低於預設值(可選) # 3,每箱同時包含好壞樣本 # 如果有特殊屬性,那么最終分裂出來的分箱數=預設的最大分箱數-特殊屬性的個數 split_intervals = max_interval - len(special_attribute) while (len(groupIntervals) > split_intervals): # 終止條件: 當前分箱數=預設的分箱數 # 每次循環時, 計算合並相鄰組別后的卡方值。具有最小卡方值的合並方案,是最優方案 #存儲卡方值 chisqList = [] for k in range(len(groupIntervals)-1): temp_group = groupIntervals[k] + groupIntervals[k+1] df2b = regroup.loc[regroup['temp'].isin(temp_group)] chisq = Chi2(df2b, 'total', 'bad', overallRate) chisqList.append(chisq) best_comnbined = chisqList.index(min(chisqList)) groupIntervals[best_comnbined] = groupIntervals[best_comnbined] + groupIntervals[best_comnbined+1] # after combining two intervals, we need to remove one of them groupIntervals.remove(groupIntervals[best_comnbined+1]) groupIntervals = [sorted(i) for i in groupIntervals] cutOffPoints = [max(i) for i in groupIntervals[:-1]] # 檢查是否有箱沒有好或者壞樣本。如果有,需要跟相鄰的箱進行合並,直到每箱同時包含好壞樣本 groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints)) #已成完成卡方分箱,但是沒有考慮其單調性 df2['temp_Bin'] = groupedvalues (binBadRate,regroup) = BinBadRate(df2, 'temp_Bin', target) [minBadRate, maxBadRate] = [min(binBadRate.values()),max(binBadRate.values())] while minBadRate ==0 or maxBadRate == 1: # 找出全部為好/壞樣本的箱 indexForBad01 = regroup[regroup['bad_rate'].isin([0,1])].temp_Bin.tolist() bin=indexForBad01[0] # 如果是最后一箱,則需要和上一個箱進行合並,也就意味着分裂點cutOffPoints中的最后一個需要移除 if bin == max(regroup.temp_Bin): cutOffPoints = cutOffPoints[:-1] # 如果是第一箱,則需要和下一個箱進行合並,也就意味着分裂點cutOffPoints中的第一個需要移除 elif bin == min(regroup.temp_Bin): cutOffPoints = cutOffPoints[1:] # 如果是中間的某一箱,則需要和前后中的一個箱進行合並,依據是較小的卡方值 else: # 和前一箱進行合並,並且計算卡方值 currentIndex = list(regroup.temp_Bin).index(bin) prevIndex = list(regroup.temp_Bin)[currentIndex - 1] df3 = df2.loc[df2['temp_Bin'].isin([prevIndex, bin])] (binBadRate, df2b) = BinBadRate(df3, 'temp_Bin', target) chisq1 = Chi2(df2b, 'total', 'bad', overallRate) # 和后一箱進行合並,並且計算卡方值 laterIndex = list(regroup.temp_Bin)[currentIndex + 1] df3b = df2.loc[df2['temp_Bin'].isin([laterIndex, bin])] (binBadRate, df2b) = BinBadRate(df3b, 'temp_Bin', target) chisq2 = Chi2(df2b, 'total', 'bad', overallRate) if chisq1 < chisq2: cutOffPoints.remove(cutOffPoints[currentIndex - 1]) else: cutOffPoints.remove(cutOffPoints[currentIndex]) # 完成合並之后,需要再次計算新的分箱准則下,每箱是否同時包含好壞樣本 groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints)) df2['temp_Bin'] = groupedvalues (binBadRate, regroup) = BinBadRate(df2, 'temp_Bin', target) [minBadRate, maxBadRate] = [min(binBadRate.values()), max(binBadRate.values())] # 需要檢查分箱后的最小占比 if minBinPcnt > 0: groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints)) df2['temp_Bin'] = groupedvalues #value_counts每個數值出現了多少次 valueCounts = groupedvalues.value_counts().to_frame() N=sum(valueCounts['temp']) valueCounts['pcnt'] = valueCounts['temp'].apply(lambda x: x * 1.0 / N) valueCounts = valueCounts.sort_index() minPcnt = min(valueCounts['pcnt']) #一定要箱數大於2才可以,要不就不能再合並了 while minPcnt < minBinPcnt and len(cutOffPoints) > 2: # 找出占比最小的箱 indexForMinPcnt = valueCounts[valueCounts['pcnt'] == minPcnt].index.tolist()[0] # 如果占比最小的箱是最后一箱,則需要和上一個箱進行合並,也就意味着分裂點cutOffPoints中的最后一個需要移除 if indexForMinPcnt == max(valueCounts.index): cutOffPoints = cutOffPoints[:-1] # 如果占比最小的箱是第一箱,則需要和下一個箱進行合並,也就意味着分裂點cutOffPoints中的第一個需要移除 elif indexForMinPcnt == min(valueCounts.index): cutOffPoints = cutOffPoints[1:] # 如果占比最小的箱是中間的某一箱,則需要和前后中的一個箱進行合並,依據是較小的卡方值 else: # 和前一箱進行合並,並且計算卡方值 currentIndex = list(valueCounts.index).index(indexForMinPcnt) prevIndex = list(valueCounts.index)[currentIndex - 1] df3 = df2.loc[df2['temp_Bin'].isin([prevIndex, indexForMinPcnt])] (binBadRate, df2b) = BinBadRate(df3, 'temp_Bin', target) chisq1 = Chi2(df2b, 'total', 'bad', overallRate) # 和后一箱進行合並,並且計算卡方值 laterIndex = list(valueCounts.index)[currentIndex + 1] df3b = df2.loc[df2['temp_Bin'].isin([laterIndex, indexForMinPcnt])] (binBadRate, df2b) = BinBadRate(df3b, 'temp_Bin', target) chisq2 = Chi2(df2b, 'total', 'bad', overallRate) if chisq1 < chisq2: cutOffPoints.remove(cutOffPoints[currentIndex - 1]) else: cutOffPoints.remove(cutOffPoints[currentIndex]) cutOffPoints = special_attribute + cutOffPoints return cutOffPoints ''' 對於數值型變量,需要先分箱,再計算WOE、IV 分箱的結果需要滿足: 1,箱數不超過5 2,bad rate單調 3,每箱占比不低於5% ''' bin_dict = [] for var in numericalFeatures: binNum = 5 newBin = var + '_Bin' bin = ChiMerge(trainData, var, 'label',max_interval=binNum,minBinPcnt = 0.05) trainData[newBin] = trainData[var].apply(lambda x: AssignBin(x,bin)) # 如果不滿足單調性,就降低分箱個數 while not BadRateMonotone(trainData, newBin, 'label'): binNum -= 1 bin = ChiMerge(trainData, var, 'label', max_interval=binNum, minBinPcnt=0.05) trainData[newBin] = trainData[var].apply(lambda x: AssignBin(x, bin)) WOE_IV_dict[newBin] = CalcWOE(trainData, newBin, 'label') bin_dict.append({var:bin}) ############################## # 3, 單變量分析和多變量分析 # ############################## # 選取IV高於0.02的變量 high_IV = [(k,v['IV']) for k,v in WOE_IV_dict.items() if v['IV'] >= 0.02] high_IV_sorted = sorted(high_IV, key=lambda k: k[1],reverse=True) IV_values = [i[1] for i in high_IV_sorted] IV_name = [i[0] for i in high_IV_sorted] plt.title('High feature IV') plt.bar(range(len(IV_values)),IV_values) for (var,iv) in high_IV: newVar = var+"_WOE" trainData[newVar] = trainData[var].map(lambda x: WOE_IV_dict[var]['WOE'][x]) saveFile = open(folderOfData+'/trainData.pkl','wb+') pickle.dump(trainData,saveFile) saveFile.close() saveFile = open(folderOfData+'/trainData.pkl','rb+') trainData = pickle.load(saveFile) saveFile.close() ''' 多變量分析:比較兩兩線性相關性。如果相關系數的絕對值高於閾值,剔除IV較低的一個 ''' deleted_index = [] cnt_vars = len(high_IV_sorted) for i in range(cnt_vars): if i in deleted_index: continue x1 = high_IV_sorted[i][0]+"_WOE" for j in range(cnt_vars): if i == j or j in deleted_index: continue y1 = high_IV_sorted[j][0]+"_WOE" roh = np.corrcoef(trainData[x1],trainData[y1])[0,1] if abs(roh)>0.7: x1_IV = high_IV_sorted[i][1] y1_IV = high_IV_sorted[j][1] if x1_IV > y1_IV: deleted_index.append(j) else: deleted_index.append(i) single_analysis_vars = [high_IV_sorted[i][0]+"_WOE" for i in range(cnt_vars) if i not in deleted_index] X = trainData[single_analysis_vars] f, ax = plt.subplots(figsize=(10, 8)) corr = X.corr() sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True),square=True, ax=ax) ''' 多變量分析:VIF ''' X = np.matrix(trainData[single_analysis_vars]) VIF_list = [variance_inflation_factor(X, i) for i in range(X.shape[1])] print(max(VIF_list)) # 最大的VIF是 3.429,小於10,因此這一步認為沒有多重共線性 multi_analysis = single_analysis_vars ################################ # 4, 建立邏輯回歸模型預測違約 # ################################ X = trainData[multi_analysis] #截距項 X['intercept'] = [1] * X.shape[0] y = trainData['label'] logit = sm.Logit(y, X) logit_result = logit.fit() pvalues = logit_result.pvalues params = logit_result.params fit_result = pd.concat([params,pvalues],axis=1) fit_result.columns = ['coef','p-value'] fit_result = fit_result.sort_values(by = 'coef') ''' coef p-value intercept -1.812690 0.000000e+00 increaseUrateL6M_Bin_WOE -1.220508 2.620858e-62 maxDelqL3M_Bin_WOE -0.735785 3.600473e-163 M2FreqL3M_Bin_WOE -0.681009 1.284840e-63 avgUrateL1M_Bin_WOE -0.548608 2.350785e-07 avgUrateL3M_Bin_WOE -0.467298 8.870679e-05 M0FreqL3M_WOE -0.392261 2.386403e-26 avgUrateL6M_Bin_WOE -0.309831 3.028939e-02 increaseUrateL3M_WOE -0.300805 1.713878e-03 maxUrateL3M_Bin_WOE -0.213742 1.412028e-01 avgPayL6M_Bin_WOE -0.208924 4.241600e-07 maxDelqL1M_Bin_WOE -0.162785 1.835990e-07 M1FreqL12M_Bin_WOE -0.125595 2.576692e-03 M1FreqL6M_Bin_WOE -0.067979 8.572653e-02 maxPayL6M_Bin_WOE -0.063942 3.807461e-01 maxUrateL6M_Bin_WOE -0.056266 7.120434e-01 avgPayL12M_Bin_WOE -0.039538 4.487068e-01 maxPayL12M_Bin_WOE 0.030780 8.135143e-01 M0FreqL12M_Bin_WOE 0.077365 1.826047e-01 minPayL6M_Bin_WOE 0.107868 3.441998e-01 increaseUrateL12M_Bin_WOE 0.115845 4.292397e-01 M0FreqL6M_Bin_WOE 0.145630 1.869349e-03 minPayL3M_Bin_WOE 0.151294 4.293344e-02 avgPayL1M_Bin_WOE 0.260946 6.606818e-04 變量 maxPayL12M_Bin_WOE 0.030780 8.135143e-01 M0FreqL12M_Bin_WOE 0.077365 1.826047e-01 minPayL6M_Bin_WOE 0.107868 3.441998e-01 increaseUrateL12M_Bin_WOE 0.115845 4.292397e-01 M0FreqL6M_Bin_WOE 0.145630 1.869349e-03 minPayL3M_Bin_WOE 0.151294 4.293344e-02 avgPayL1M_Bin_WOE 0.260946 6.606818e-04 的系數為正,需要單獨檢驗 ''' sm.Logit(y, trainData['maxPayL12M_Bin_WOE']).fit().params # -0.980206 sm.Logit(y, trainData['M0FreqL12M_Bin_WOE']).fit().params # -1.050918 sm.Logit(y, trainData['minPayL6M_Bin_WOE']).fit().params # -0.812302 sm.Logit(y, trainData['increaseUrateL12M_Bin_WOE']).fit().params # -0.914707 sm.Logit(y, trainData['M0FreqL6M_Bin_WOE']).fit().params # -1.065785 sm.Logit(y, trainData['minPayL3M_Bin_WOE']).fit().params # -0.819148 sm.Logit(y, trainData['avgPayL1M_Bin_WOE']).fit().params # -1.007179 # 單獨建立回歸模型,系數為負,與預期相符,說明仍然存在多重共線性 # 下一步,用GBDT跑出變量重要性,挑選出合適的變量 clf = ensemble.GradientBoostingClassifier() gbdt_model = clf.fit(X, y) importace = gbdt_model.feature_importances_.tolist() featureImportance = zip(multi_analysis,importace) featureImportanceSorted = sorted(featureImportance, key=lambda k: k[1],reverse=True) # 先假定模型可以容納5個特征,再逐步增加特征個數,直到有特征的系數為正,或者p值超過0.1 n = 5 featureSelected = [i[0] for i in featureImportanceSorted[:n]] X_train = X[featureSelected+['intercept']] logit = sm.Logit(y, X_train) logit_result = logit.fit() pvalues = logit_result.pvalues params = logit_result.params fit_result = pd.concat([params,pvalues],axis=1) fit_result.columns = ['coef','p-value'] while(n<len(featureImportanceSorted)): nextVar = featureImportanceSorted[n][0] featureSelected = featureSelected + [nextVar] X_train = X[featureSelected+['intercept']] logit = sm.Logit(y, X_train) logit_result = logit.fit() params = logit_result.params #print("current var is ",nextVar,' ', params[nextVar]) if max(params) < 0: n += 1 else: featureSelected.remove(nextVar) n += 1 X_train = X[featureSelected+['intercept']] logit = sm.Logit(y, X_train) logit_result = logit.fit() pvalues = logit_result.pvalues params = logit_result.params fit_result = pd.concat([params,pvalues],axis=1) fit_result.columns = ['coef','p-value'] fit_result = fit_result.sort_values(by = 'p-value') ''' coef p-value intercept -1.809479 0.000000e+00 maxDelqL3M_Bin_WOE -0.762903 2.603323e-192 increaseUrateL6M_Bin_WOE -1.194299 4.259502e-68 M2FreqL3M_Bin_WOE -0.684674 1.067350e-64 M0FreqL3M_WOE -0.266852 6.912786e-18 avgPayL6M_Bin_WOE -0.191338 5.979102e-08 avgUrateL1M_Bin_WOE -0.555628 1.473557e-07 maxDelqL1M_Bin_WOE -0.129355 1.536173e-06 avgUrateL3M_Bin_WOE -0.453340 1.364483e-04 increaseUrateL3M_WOE -0.281940 3.123852e-03 M1FreqL12M_Bin_WOE -0.104303 5.702452e-03 avgUrateL6M_Bin_WOE -0.280308 4.784200e-02 maxUrateL3M_Bin_WOE -0.221817 1.254597e-01 M1FreqL6M_Bin_WOE -0.024903 5.002232e-01 maxUrateL6M_Bin_WOE -0.060720 6.897626e-01 maxPayL6M_Bin_WOE,maxUrateL6M_Bin_WOE,avgUrateL6M_Bin_WOE,avgPayL12M_Bin_WOE,increaseUrateL12M_Bin_WOE,maxPayL12M_Bin_WOE 的p值大於0.1 單獨檢驗顯著性 ''' largePValueVars = pvalues[pvalues>0.1].index for var in largePValueVars: X_temp = X[[var, 'intercept']] logit = sm.Logit(y, X_temp) logit_result = logit.fit() pvalues = logit_result.pvalues print("The p-value of {0} is {1} ".format(var, str(pvalues[var]))) ''' The p-value of maxPayL6M_Bin_WOE is 3.94466107162e-137 The p-value of maxUrateL6M_Bin_WOE is 5.83590695685e-35 The p-value of avgUrateL6M_Bin_WOE is 8.17633724544e-37 The p-value of avgPayL12M_Bin_WOE is 1.10614470149e-295 The p-value of increaseUrateL12M_Bin_WOE is 1.9777915301e-57 The p-value of maxPayL12M_Bin_WOE is 1.04348079207e-45 顯然,單個變量的p值是顯著地。說明任然存在着共線性。 ''' ''' 可用L1約束,直到所有變量顯著 ''' X2 = X[featureSelected+['intercept']] for alpha in range(100,0,-1): l1_logit = sm.Logit.fit_regularized(sm.Logit(y, X2), start_params=None, method='l1', alpha=alpha) pvalues = l1_logit.pvalues params = l1_logit.params if max(pvalues)>=0.1 or max(params)>0: break bestAlpha = alpha + 1 l1_logit = sm.Logit.fit_regularized(sm.Logit(y, X2), start_params=None, method='l1', alpha=bestAlpha) params = l1_logit.params params2 = params.to_dict() featuresInModel = [k for k, v in params2.items() if k!='intercept' and v < -0.0000001] X_train = X[featuresInModel + ['intercept']] logit = sm.Logit(y, X_train) logit_result = logit.fit() trainData['pred'] = logit_result.predict(X_train) ### 計算KS值 def KS(df, score, target): ''' :param df: 包含目標變量與預測值的數據集,dataframe :param score: 得分或者概率,str :param target: 目標變量,str :return: KS值 ''' total = df.groupby([score])[target].count() bad = df.groupby([score])[target].sum() all = pd.DataFrame({'total':total, 'bad':bad}) all['good'] = all['total'] - all['bad'] all[score] = all.index all = all.sort_values(by=score,ascending=False) all.index = range(len(all)) all['badCumRate'] = all['bad'].cumsum() / all['bad'].sum() all['goodCumRate'] = all['good'].cumsum() / all['good'].sum() KS = all.apply(lambda x: x.badCumRate - x.goodCumRate, axis=1) return max(KS) ################################### # 5,在測試集上測試邏輯回歸的結果 # ################################### # 准備WOE編碼后的變量 modelFeatures = [i.replace('_Bin','').replace('_WOE','') for i in featuresInModel] ''' ['maxDelqL3M', 'increaseUrateL6M', 'M0FreqL3M', 'avgUrateL1M', 'M2FreqL3M', 'M1FreqL6M', 'avgUrateL3M', 'maxDelqL1M', 'avgPayL6M', 'M1FreqL12M'] ''' numFeatures = [i for i in modelFeatures if i in numericalFeatures] charFeatures = [i for i in modelFeatures if i in categoricalFeatures] #滿足變量的數據預處理 testData['maxDelqL1M'] = testData.apply(lambda x: DelqFeatures(x,1,'max delq'),axis=1) testData['maxDelqL3M'] = testData.apply(lambda x: DelqFeatures(x,3,'max delq'),axis=1) # testData['M2FreqL3M'] = testData.apply(lambda x: DelqFeatures(x, 3, 'M2 times'), axis=1) testData['M0FreqL3M'] = testData.apply(lambda x: DelqFeatures(x,3,'M0 times'),axis=1) testData['M1FreqL6M'] = testData.apply(lambda x: DelqFeatures(x, 6, 'M1 times'), axis=1) testData['M2FreqL3M'] = testData.apply(lambda x: DelqFeatures(x, 3, 'M2 times'), axis=1) testData['M1FreqL12M'] = testData.apply(lambda x: DelqFeatures(x, 12, 'M1 times'), axis=1) # testData['maxUrateL6M'] = testData.apply(lambda x: UrateFeatures(x,6,'max utilization rate'),axis = 1) testData['avgUrateL1M'] = testData.apply(lambda x: UrateFeatures(x,1, 'mean utilization rate'),axis=1) testData['avgUrateL3M'] = testData.apply(lambda x: UrateFeatures(x,3, 'mean utilization rate'),axis=1) # testData['avgUrateL6M'] = testData.apply(lambda x: UrateFeatures(x,6, 'mean utilization rate'),axis=1) testData['increaseUrateL6M'] = testData.apply(lambda x: UrateFeatures(x, 6, 'increase utilization rate'),axis=1) # testData['avgPayL3M'] = testData.apply(lambda x: PaymentFeatures(x, 3, 'mean payment ratio'),axis=1) testData['avgPayL6M'] = testData.apply(lambda x: PaymentFeatures(x, 6, 'mean payment ratio'),axis=1) #合並分箱 testData['M2FreqL3M_Bin'] = testData['M2FreqL3M'].apply(lambda x: int(x>=1)) testData['maxDelqL1M_Bin'] = testData['maxDelqL1M'].apply(lambda x: MergeByCondition(x,['==0','==1','>=2'])) testData['maxDelqL3M_Bin'] = testData['maxDelqL3M'].apply(lambda x: MergeByCondition(x,['==0','==1','>=2'])) for var in numFeatures: newBin = var+"_Bin" bin = [list(i.values()) for i in bin_dict if var in i][0][0] testData[newBin] = testData[var].apply(lambda x: AssignBin(x,bin)) finalFeatures = [i+'_Bin' for i in numFeatures] + ['M2FreqL3M_Bin','maxDelqL1M_Bin','maxDelqL3M_Bin','M0FreqL3M'] for var in finalFeatures: var2 = var+"_WOE" testData[var2] = testData[var].apply(lambda x: WOE_IV_dict[var]['WOE'][x]) X_test = testData[featuresInModel] X_test['intercept'] = [1]*X_test.shape[0] testData['pred'] = logit_result.predict(X_test) ks = KS(testData, 'pred', 'label') auc = roc_auc_score(testData['label'],testData['pred']) # KS=64.94%, AUC = 84.43%,都高於30%的標准。因此該模型是可用的。 ########################## # 6,在測試集上計算分數 # ########################## def Prob2Score(prob, basePoint, PDO): #將概率轉化成分數且為正整數 y = np.log(prob/(1-prob)) return int(basePoint+PDO/np.log(2)*(-y)) BasePoint, PDO = 500,50 testData['score'] = testData['pred'].apply(lambda x: Prob2Score(x, BasePoint, PDO)) plt.hist(testData['score'],bins=100)
python金融風控評分卡模型和數據分析微專業課(博主親自錄制視頻):http://dwz.date/b9vv
微信掃二維碼,免費學習更多python資源