Pytorch Sampler詳解


關於為什么要用Sampler可以閱讀一文弄懂Pytorch的DataLoader, DataSet, Sampler之間的關系

本文我們會從源代碼的角度了解Sampler。

Sampler

首先需要知道的是所有的采樣器都繼承自Sampler這個類,如下:

可以看到主要有三種方法:分別是:

  • __init__: 這個很好理解,就是初始化
  • __iter__: 這個是用來產生迭代索引值的,也就是指定每個step需要讀取哪些數據
  • __len__: 這個是用來返回每次迭代器的長度
class Sampler(object):
    r"""Base class for all Samplers.
    Every Sampler subclass has to provide an __iter__ method, providing a way
    to iterate over indices of dataset elements, and a __len__ method that
    returns the length of the returned iterators.
    """
    # 一個 迭代器 基類
    def __init__(self, data_source):
        pass

    def __iter__(self):
        raise NotImplementedError

    def __len__(self):
        raise NotImplementedError

子類Sampler

介紹完父類后我們看看Pytorch給我們提供了哪些采樣器

SequentialSampler

這個看名字就很好理解,其實就是按順序對數據集采樣。

其原理是首先在初始化的時候拿到數據集data_source,之后在__iter__方法中首先得到一個和data_source一樣長度的range可迭代器。每次只會返回一個索引值

class SequentialSampler(Sampler):
    r"""Samples elements sequentially, always in the same order.
    Arguments:
        data_source (Dataset): dataset to sample from
    """
   # 產生順序 迭代器
    def __init__(self, data_source):
        self.data_source = data_source

    def __iter__(self):
        return iter(range(len(self.data_source)))

    def __len__(self):
        return len(self.data_source)

使用示例:

a = [1,5,78,9,68]
b = torch.utils.data.SequentialSampler(a)
for x in b:
	print(x)
	
>>> 0
	1
	2
	3
	4

RandomSampler

參數作用:

  • data_source: 同上
  • num_samples: 指定采樣的數量,默認是所有。
  • replacement: 若為True,則表示可以重復采樣,即同一個樣本可以重復采樣,這樣可能導致有的樣本采樣不到。所以此時我們可以設置num_samples來增加采樣數量使得每個樣本都可能被采樣到。
class RandomSampler(Sampler):
    r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.
    If with replacement, then user can specify ``num_samples`` to draw.
    Arguments:
        data_source (Dataset): dataset to sample from
        num_samples (int): number of samples to draw, default=len(dataset)
        replacement (bool): samples are drawn with replacement if ``True``, default=False
    """

    def __init__(self, data_source, replacement=False, num_samples=None):
        self.data_source = data_source
        self.replacement = replacement
        self.num_samples = num_samples

        if self.num_samples is not None and replacement is False:
            raise ValueError("With replacement=False, num_samples should not be specified, "
                             "since a random permute will be performed.")

        if self.num_samples is None:
            self.num_samples = len(self.data_source)

        if not isinstance(self.num_samples, int) or self.num_samples <= 0:
            raise ValueError("num_samples should be a positive integeral "
                             "value, but got num_samples={}".format(self.num_samples))
        if not isinstance(self.replacement, bool):
            raise ValueError("replacement should be a boolean value, but got "
                             "replacement={}".format(self.replacement))

    def __iter__(self):
        n = len(self.data_source)
        if self.replacement:
            return iter(torch.randint(high=n, size=(self.num_samples,), dtype=torch.int64).tolist())
        return iter(torch.randperm(n).tolist())

    def __len__(self):
        return len(self.data_source)

SubsetRandomSampler

class SubsetRandomSampler(Sampler):
    r"""Samples elements randomly from a given list of indices, without replacement.
    Arguments:
        indices (sequence): a sequence of indices
    """

    def __init__(self, indices):
        self.indices = indices

    def __iter__(self):
        return (self.indices[i] for i in torch.randperm(len(self.indices)))

    def __len__(self):
        return len(self.indices)

這個采樣器常見的使用場景是將訓練集划分成訓練集和驗證集,示例如下:

n_train = len(train_dataset)
split = n_train // 3
indices = random.shuffle(list(range(n_train)))
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[split:])
valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[:split])
train_loader = DataLoader(..., sampler=train_sampler, ...)
valid_loader = DataLoader(..., sampler=valid_sampler, ...)

WeightedRandomSampler

參數作用同上面的RandomSampler,不再贅述。


class WeightedRandomSampler(Sampler):
    r"""Samples elements from [0,..,len(weights)-1] with given probabilities (weights).
    Arguments:
        weights (sequence)   : a sequence of weights, not necessary summing up to one
        num_samples (int): number of samples to draw
        replacement (bool): if ``True``, samples are drawn with replacement.
            If not, they are drawn without replacement, which means that when a
            sample index is drawn for a row, it cannot be drawn again for that row.
    """

    def __init__(self, weights, num_samples, replacement=True):
        if not isinstance(num_samples, _int_classes) or isinstance(num_samples, bool) or \
                num_samples <= 0:
            raise ValueError("num_samples should be a positive integeral "
                             "value, but got num_samples={}".format(num_samples))
        if not isinstance(replacement, bool):
            raise ValueError("replacement should be a boolean value, but got "
                             "replacement={}".format(replacement))
        self.weights = torch.tensor(weights, dtype=torch.double)
        self.num_samples = num_samples
        self.replacement = replacement

    def __iter__(self):
        return iter(torch.multinomial(self.weights, self.num_samples, self.replacement).tolist())

    def __len__(self):
        return self.num_samples  ## 指的是一次一共采樣的樣本的數量

BatchSampler

前面的采樣器每次都只返回一個索引,但是我們在訓練時是對批量的數據進行訓練,而這個工作就需要BatchSampler來做。也就是說BatchSampler的作用就是將前面的Sampler采樣得到的索引值進行合並,當數量等於一個batch大小后就將這一批的索引值返回。

class BatchSampler(Sampler):
    r"""Wraps another sampler to yield a mini-batch of indices.
    Args:
        sampler (Sampler): Base sampler.
        batch_size (int): Size of mini-batch.
        drop_last (bool): If ``True``, the sampler will drop the last batch if
            its size would be less than ``batch_size``
    Example:
        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    """
# 批次采樣
    def __init__(self, sampler, batch_size, drop_last):
        if not isinstance(sampler, Sampler):
            raise ValueError("sampler should be an instance of "
                             "torch.utils.data.Sampler, but got sampler={}"
                             .format(sampler))
        if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \
                batch_size <= 0:
            raise ValueError("batch_size should be a positive integeral value, "
                             "but got batch_size={}".format(batch_size))
        if not isinstance(drop_last, bool):
            raise ValueError("drop_last should be a boolean value, but got "
                             "drop_last={}".format(drop_last))
        self.sampler = sampler
        self.batch_size = batch_size
        self.drop_last = drop_last

    def __iter__(self):
        batch = []
        for idx in self.sampler:
            batch.append(idx)
            if len(batch) == self.batch_size:
                yield batch
                batch = []
        if len(batch) > 0 and not self.drop_last:
            yield batch

    def __len__(self):
        if self.drop_last:
            return len(self.sampler) // self.batch_size
        else:
            return (len(self.sampler) + self.batch_size - 1) // self.batch_size

微信公眾號:AutoML機器學習
MARSGGBO原創
如有意合作或學術討論歡迎私戳聯系~
郵箱:marsggbo@foxmail.com


2020-01-23 17:45:35


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM