灰度圖像直方圖(源碼實現)


原理:統計每個像素灰度出現的概率
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('D:/pythonob/imageinpaint/img/flower.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
count = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
pixel = gray[i,j]
index = int(pixel)
count[index] = count[index]+1
for i in range(0,256):
count[i] = count[i]/(height*width)
x = np.linspace(0,255,256)
y = count
plt.bar(x,y,0.9,alpha = 1 ,color = 'b')
plt.show()
cv2.waitKey(0)
效果圖:

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM