Numpy 庫常用函數大全


.ndim :維度
.shape :各維度的尺度 (2,5)
.size :元素的個數 10
.dtype :元素的類型 dtype(‘int32’)
.itemsize :每個元素的大小,以字節為單位 ,每個元素占4個字節
ndarray數組的創建
np.arange(n) ; 元素從0到n-1的ndarray類型
np.ones(shape): 生成全1
np.zeros((shape), ddtype = np.int32) : 生成int32型的全0
np.full(shape, val): 生成全為val
np.eye(n) : 生成單位矩陣

np.ones_like(a) : 按數組a的形狀生成全1的數組
np.zeros_like(a): 同理
np.full_like (a, val) : 同理

np.linspace(1,10,4): 根據起止數據等間距地生成數組
np.linspace(1,10,4, endpoint = False):endpoint 表示10是否作為生成的元素
np.concatenate():

-數組的維度變換

.reshape(shape) : 不改變當前數組,依shape生成
.resize(shape) : 改變當前數組,依shape生成
.swapaxes(ax1, ax2) : 將兩個維度調換
.flatten() : 對數組進行降維,返回折疊后的一位數組

-數組的類型變換

數據類型的轉換 :a.astype(new_type) : eg, a.astype (np.float)
數組向列表的轉換: a.tolist()
數組的索引和切片

- 一維數組切片

a = np.array ([9, 8, 7, 6, 5, ])
a[1:4:2] –> array([8, 6]) : a[起始編號:終止編號(不含): 步長]

- 多維數組索引

a = np.arange(24).reshape((2, 3, 4))
a[1, 2, 3] 表示 3個維度上的編號, 各個維度的編號用逗號分隔

- 多維數組切片

a [:,:,::2 ] 缺省時,表示從第0個元素開始,到最后一個元素

數組的運算

np.abs(a) np.fabs(a) : 取各元素的絕對值
np.sqrt(a) : 計算各元素的平方根
np.square(a): 計算各元素的平方
np.log(a) np.log10(a) np.log2(a) : 計算各元素的自然對數、10、2為底的對數
np.ceil(a) np.floor(a) : 計算各元素的ceiling 值, floor值(ceiling向上取整,floor向下取整)
np.rint(a) : 各元素 四舍五入
np.modf(a) : 將數組各元素的小數和整數部分以兩個獨立數組形式返回
np.exp(a) : 計算各元素的指數值
np.sign(a) : 計算各元素的符號值 1(+),0,-1(-)
.
np.maximum(a, b) np.fmax() : 比較(或者計算)元素級的最大值
np.minimum(a, b) np.fmin() : 取最小值
np.mod(a, b) : 元素級的模運算
np.copysign(a, b) : 將b中各元素的符號賦值給數組a的對應元素

- 數據的CSV文件存取

CSV (Comma-Separated Value,逗號分隔值) 只能存儲一維和二維數組

np.savetxt(frame, array, fmt=’% .18e’, delimiter = None): frame是文件、字符串等,可以是.gz .bz2的壓縮文件; array 表示存入的數組; fmt 表示元素的格式 eg: %d % .2f % .18e ; delimiter: 分割字符串,默認是空格
eg: np.savetxt(‘a.csv’, a, fmt=%d, delimiter = ‘,’ )

np.loadtxt(frame, dtype=np.float, delimiter = None, unpack = False) : frame是文件、字符串等,可以是.gz .bz2的壓縮文件; dtype:數據類型,讀取的數據以此類型存儲; delimiter: 分割字符串,默認是空格; unpack: 如果為True, 讀入屬性將分別寫入不同變量。

-多維數據的存取

a.tofile(frame, sep=’’, format=’%s’ ) : frame: 文件、字符串; sep: 數據分割字符串,如果是空串,寫入文件為二進制 ; format:: 寫入數據的格式
eg: a = np.arange(100).reshape(5, 10, 2)
a.tofile(“b.dat”, sep=”,”, format=’%d’)

np.fromfile(frame, dtype = float, count=-1, sep=’’): frame: 文件、字符串 ; dtype: 讀取的數據以此類型存儲; count:讀入元素個數, -1表示讀入整個文件; sep: 數據分割字符串,如果是空串,寫入文件為二進制

PS: a.tofile() 和np.fromfile()要配合使用,要知道數據的類型和維度。

np.save(frame, array) : frame: 文件名,以.npy為擴展名,壓縮擴展名為.npz ; array為數組變量
np.load(fname) : frame: 文件名,以.npy為擴展名,壓縮擴展名為

np.save() 和np.load() 使用時,不用自己考慮數據類型和維度。

- numpy隨機數函數

numpy 的random子庫

rand(d0, d1, …,dn) : 各元素是[0, 1)的浮點數,服從均勻分布
randn(d0, d1, …,dn):標准正態分布
randint(low, high,( shape)): 依shape創建隨機整數或整數數組,范圍是[ low, high)
seed(s) : 隨機數種子

shuffle(a) : 根據數組a的第一軸進行隨機排列,改變數組a
permutation(a) : 根據數組a的第一軸進行隨機排列, 但是不改變原數組,將生成新數組
choice(a[, size, replace, p]) : 從一維數組a中以概率p抽取元素, 形成size形狀新數組,replace表示是否可以重用元素,默認為False。
eg: 這里寫圖片描述
replace = False時,選取過的元素將不會再選取

uniform(low, high, size) : 產生均勻分布的數組,起始值為low,high為結束值,size為形狀
normal(loc, scale, size) : 產生正態分布的數組, loc為均值,scale為標准差,size為形狀
poisson(lam, size) : 產生泊松分布的數組, lam隨機事件發生概率,size為形狀
eg: a = np.random.uniform(0, 10, (3, 4)) a = np.random.normal(10, 5, (3, 4))

- numpy的統計函數

sum(a, axis = None) : 依給定軸axis計算數組a相關元素之和,axis為整數或者元組
mean(a, axis = None) : 同理,計算平均值
average(a, axis =None, weights=None) : 依給定軸axis計算數組a相關元素的加權平均值
std(a, axis = None) :同理,計算標准差
var(a, axis = None): 計算方差
eg: np.mean(a, axis =1) : 對數組a的第二維度的數據進行求平均
a = np.arange(15).reshape(3, 5)
np.average(a, axis =0, weights =[10, 5, 1]) : 對a第一各維度加權求平均,weights中為權重,注意要和a的第一維匹配

min(a) max(a) : 計算數組a的最小值和最大值
argmin(a) argmax(a) : 計算數組a的最小、最大值的下標(注:是一維的下標)
unravel_index(index, shape) : 根據shape將一維下標index轉成多維下標
ptp(a) : 計算數組a最大值和最小值的差
median(a) : 計算數組a中元素的中位數(中值)
eg:a = [[15, 14, 13],
[12, 11, 10] ]
np.argmax(a) –> 0
np.unravel_index( np.argmax(a), a.shape) –> (0,0)

- numpy的梯度函數

np.gradient(a) : 計算數組a中元素的梯度,f為多維時,返回每個維度的梯度
離散梯度: xy坐標軸連續三個x軸坐標對應的y軸值:a, b, c 其中b的梯度是(c-a)/2
而c的梯度是: (c-b)/1

當為二維數組時,np.gradient(a) 得出兩個數組,第一個數組對應最外層維度的梯度,第二個數組對應第二層維度的梯度。
這里寫圖片描述

- 圖像的表示和變換

PIL, python image library 庫
from PIL import Image
Image是PIL庫中代表一個圖像的類(對象)

im = np.array(Image.open(“.jpg”))

im = Image.fromarray(b.astype(‘uint8’)) # 生成
im.save(“路徑.jpg”) # 保存

im = np.array(Image.open(“.jpg”).convert(‘L’)) # convert(‘L’)表示轉為灰度圖


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM