.NET輕松寫博客園爬蟲


.NET輕松寫博客園爬蟲

爬蟲,是一種按照一定的規則,自動地抓取網站的程序或者腳本。.NET寫爬蟲非常簡單,並能輕松優化性能。今天我將分享一段簡短的代碼,爬出博客園前200頁精華內容,然后通過微小的改動,將代碼升級為多線程爬蟲,讓爬蟲速度提升數倍;最后將對爬到了內容進行一些有趣的分析。

本文演示的代碼,可以從這里下載:https://github.com/sdcb/blog-data/tree/master/2019/20190826-cnblogs-crawler-home

​我的演示代碼通過LINQPad運行,可以在這里找到最新的LINQPad下載鏈接:https://www.linqpad.net/Download.aspx

這些代碼同樣可以運行在Visual Studio中。其中.Dump()方法可以在Visual Studio中搜索並安裝NuGet包即可兼容:

Install-Package LINQPad

爬蟲的三要素

經過我“多年”的爬蟲騷操作的經驗,我認為爬蟲無非就是:

  1. 下載網站數據;
  2. 解析/保存網站數據;
  3. 分析數據與下個頁面之間的關系,以便繼續下載下個頁面數據;

下面我將通過代碼演示這三點。

下載網站數據

換作以前,有WebRequest/WebClient/RestSharp之類的選擇,但如今已經都被HttpClient取代了,HttpClient同時內置於.NET Framework 4.5/netstandard 1.1及以后的版本,不用安裝第三方包。

代碼使用也非常簡單:

var client = new HttpClient();
string response = await client.DownloadStringAsync("https://www.cnblogs.com");

其中response就是從博客園下載的html字符串。

解析網站數據

.NET解析html有多個包可供選擇,如HtmlAgilityPackCsQuery等。但AngleSharp由於其簡單好用、功能強大,已經也成為解析html的不錯之選。

AngleSharp是開源項目,Github地址是:https://github.com/AngleSharp/AngleSharp

近期還加入了.NET Foundation(.NET基金會),官網地址是:https://anglesharp.github.io

使用AngleSharp解析html示例代碼(LINQPad中,按Ctrl+Shift+P快速安裝NuGet):

Install-Package AngleSharp
Install-Package Newtonsoft.Json

使用代碼如下:

var parser = new HtmlParser();
IHtmlDocument dom = parser.ParseDocument(@"<ul>
	<li>
		<a href=""cnblogs.com"">博客園</a>
		<a href=""baidu.com"">百度</a>
		<a href=""google.com"">谷歌</a>
	</li>
<ul>");
var data = dom.QuerySelectorAll("ul li a").Select(x => new
{
	Link = x.GetAttribute("href"), 
	Title = x.TextContent
}).Dump();

運行效果:

Link Title
cnblogs.com 博客園
baidu.com 百度
google.com 谷歌

然后這些數據可以通過JSON序列化,保存到桌面上:

File.WriteAllText(@"C:\Users\sdfly\Desktop\cnblogs.json", JsonConvert.SerializeObject(data));

在解析網頁數據時,可能還需要靈活運用正則表達式,來抓取沒那么直觀的信息。

頁面與頁面之間的關系

我們找到博客園的分頁器,打開F12開發者工具,用鼠標定位到分頁器:

如圖,注意到,每一個頁面按鈕,都對應了一個不同的鏈接地址,如第2頁,對應的的鏈接是:/sitehome/p/2,第3頁,對應的是:/sitehome/p/3

博客園首頁內容一共有200頁,因此只需將在每一頁拼接一個$"/sitehome/p/{頁面數碼}"即可。

代碼與優化

根據上面的知識,可以輕松將博客園首頁200頁數據爬出來:

var http = new HttpClient();
var parser = new HtmlParser();

for (var page = 1; page <= 200; ++page)
{
	string pageData = await http.GetStringAsync($"https://www.cnblogs.com/sitehome/p/{page}");
	IHtmlDocument doc = await parser.ParseDocumentAsync(pageData);
	doc.QuerySelectorAll(".post_item").Select(tag => new
	{
		Title = tag.QuerySelector(".titlelnk").TextContent,
		Page = page,
		UserName = tag.QuerySelector(".post_item_foot .lightblue").TextContent,
		PublishTime = DateTime.Parse(Regex.Match(tag.QuerySelector(".post_item_foot").ChildNodes[2].TextContent, @"(\d{4}\-\d{2}\-\d{2}\s\d{2}:\d{2})", RegexOptions.None).Value),
		CommentCount = int.Parse(tag.QuerySelector(".post_item_foot .article_comment").TextContent.Trim()[3..^1]),
		ViewCount = int.Parse(tag.QuerySelector(".post_item_foot .article_view").TextContent[3..^1]),
		BriefContent = tag.QuerySelector(".post_item_summary").TextContent.Trim(),
	}).Dump(page);
}

運行結果如下:

多線程優化

這個爬蟲將200頁數據全部爬完,根據我的網速,需要76秒,任務管理器顯示如下(下載速度只有每秒1.7 Mbps

.NET/C#中,只需對此代碼的for循環修改為LINQ,然后而加以使用Parallel LINQ,即可將代碼並行化:

Enumerable.Range(1, 200)  // for循環轉換為LINQ
	.AsParallel()         // 將LINQ並行化
	.AsOrdered()          // 按順序保存結果(注意並非按順序執行)
	.SelectMany(page =>
	{
		return Task.Run(async() => // 非異步代碼使用async/await,需要包一層Task
		{
			string pageData = await http.GetStringAsync($"https://www.cnblogs.com/sitehome/p/{page}".Dump());
			IHtmlDocument doc = await parser.ParseDocumentAsync(pageData);
			return doc.QuerySelectorAll(".post_item").Select(tag => new 
			{
				Title = tag.QuerySelector(".titlelnk").TextContent, 
				Page = page, 
				UserName = tag.QuerySelector(".post_item_foot .lightblue").TextContent, 
				PublishTime = DateTime.Parse(Regex.Match(tag.QuerySelector(".post_item_foot").ChildNodes[2].TextContent, @"(\d{4}\-\d{2}\-\d{2}\s\d{2}:\d{2})", RegexOptions.None).Value), 
				CommentCount = int.Parse(tag.QuerySelector(".post_item_foot .article_comment").TextContent.Trim()[3..^1]), 
				ViewCount = int.Parse(tag.QuerySelector(".post_item_foot .article_view").TextContent[3..^1]), 
				BriefContent = tag.QuerySelector(".post_item_summary").TextContent.Trim(), 
			});
		}).GetAwaiter().GetResult(); // 等待Task執行完畢
	})

通過這個非常簡單的優化,在我的電腦上,即可將運行時間降低為14.915秒,速度快了5倍!同時任務管理器顯示網絡下載流量為:

數據簡單分析

現在我們得到了博客園首頁博客簡要數據,我將其保存到桌面的一個json文件中(大家也可以試着保存為其它格式,如數據庫中)。當然少不了分析一番。使用LINQPad,可以很輕松地分析這些數據,並生成圖表。

分析基礎

void Main()
{
	var data = JsonConvert.DeserializeObject<List<CnblogsItem>>(
        File.ReadAllText(@"C:\Users\sdfly\Desktop\cnblogs.json"));
}

class CnblogsItem
{
	public string TItle { get; set; }
	public int Page { get; set; }
	public string UserName { get; set; }
	public DateTime PublishTime { get; set; }
	public int CommentCount { get; set; }
	public int ViewCount { get; set; }
	public string BriefContent { get; set; }
}

我創建了一個CnblogsItem的類,用來反序列號桌面上json文件的數據。返序列化完成后,這些數據保存在data變量中。

什么時間發文章瀏覽量最高?

Util.Chart(data
        .GroupBy(x => x.PublishTime.Hour)
        .Select(x => new { Hour = x.Key, ViewCount = 1.0 * x.Sum(v => v.ViewCount) })
        .OrderByDescending(x => x.Hour), 
    x => x.Hour, 
    y => y.ViewCount).Dump();

結果:

可見,每天上午9點發文章瀏覽量最高,凌晨3-4點發文章瀏覽量最低(誰會在晚上3-4點爬起來看東西呢?)

星期幾發的文章多?

Util.Chart(data
        .GroupBy(x => x.PublishTime.DayOfWeek)
        .Select(x => new { WeekDay = x.Key, ArticleCount = x.Count() })
        .OrderBy(x => x.WeekDay),
    x => x.WeekDay.ToString(),
    y => y.ArticleCount).Dump();

結果:

可見:星期一、二、三的文章最多,星期四、五逐漸冷淡,星期六、星期日最少。——但星期六比星期日又多一點。(是因為996造成的嗎?)

哪位大佬發文最多(取前9名)?

Util.Chart(data
        .GroupBy(x => x.UserName)
        .Select(x => new { UserName = x.Key, ArticleCount = x.Count() })
        .OrderByDescending(x => x.ArticleCount)
        .Take(9), 
    x => x.UserName, 
    y => y.ArticleCount).Dump();

結果:

可見,大佬周國通竟然在前200頁博客中,獨占54篇,我點開了他的博客(https://www.cnblogs.com/tylerzhou/)看了一下,竟然都有相當的質量——絕無放水可言,深入講了許多.NET的測試系列教程,確實是大佬!

結語

實際應用的爬蟲可能不像博客園這么簡單,爬蟲如果深入,可以遇到很多很多非常有意思的情況。

今天謹希望通過這個簡單的博客園爬蟲,讓大家多多享受寫.NET/C#代碼的樂趣😃。

請關注我的微信公眾號:【DotNet騷操作】,
DotNet騷操作


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM