cifar-10數據集的可視化


 

import numpy as np
from PIL import Image
import pickle
import os
 
CHANNEL = 3
WIDTH = 32
HEIGHT = 32
 
data = []
labels=[]
classification = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']
 
for i in range(5):
    with open(r"...\cifar-10-batches-py\data_batch_"+ str(i+1),mode='rb') as file:
        data_dict = pickle.load(file, encoding='bytes')
        data+= list(data_dict[b'data'])
        labels+= list(data_dict[b'labels'])
 
img =  np.reshape(data,[-1,CHANNEL, WIDTH, HEIGHT])
 
 
data_path = "data/images/"
if not os.path.exists(data_path):
    os.makedirs(data_path)
for i in range(img.shape[0]):
 
    r = img[i][0]
    g = img[i][1]
    b = img[i][2]
 
    ir = Image.fromarray(r)
    ig = Image.fromarray(g)
    ib = Image.fromarray(b)
    rgb = Image.merge("RGB", (ir, ig, ib))
 
    name = "img-" + str(i) +"-"+ classification[labels[i]]+ ".png"
    rgb.save(data_path + name, "PNG")
with open(r"...\cifar-10-batches-py\data_batch_"+ str(i+1),mode='rb') as file:這一句中第一個參數是文件的全路徑。根據自己文件的存放位置該
變這個參數。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM