https://opensource.com/article/18/6/embedded-linux-build-tools
https://github.com/luong-komorebi/Awesome-Linux-Software#development
Anjuta:
http://anjuta.org/, a versatile software development studio featuring a number of advanced programming facilities including project management, application wizard, interactive debugger, source editor, version control, GUI designer, profiler and many more tools. It focuses on providing simple and usable user interface, yet powerful for efficient development.
codeblocks:
http://www.codeblocks.org/home, Code::Blocks is a free C, C++ and Fortran IDE built to meet the most demanding needs of its users. It is designed to be very extensible and fully configurable. Finally, an IDE with all the features you need, having a consistent look, feel and operation across platforms.
Yocto:
Yocto項目是一個開源協作項目,可幫助開發人員創建基於Linux的定制系統,這些系統專為嵌入式產品而設計,無論產品的硬件架構如何。Yocto Project提供靈活的工具集和開發環境,允許全球的嵌入式設備開發人員通過共享技術,軟件堆棧,配置和用於創建這些定制的Linux映像的最佳實踐進行協作。
buildroot:
是Linux平台上一個構建嵌入式Linux系統的框架。整個Buildroot是由Makefile腳本和Kconfig配置文件構成的。你可以和編譯Linux內核一樣,通過buildroot配置,menuconfig修改,編譯出一個完整的可以直接燒寫到機器上運行的Linux系統軟件(包含boot、kernel、rootfs以及rootfs中的各種庫和應用程序)。
使用buildroot搭建基於qemu的虛擬開發平台,參考《通過buildroot+qemu搭建ARM-Linux虛擬開發環境》。
文件系統搭建,強烈建議直接用buildroot,官網 http://buildroot.uclibc.org/ 上有使用教程非常詳細。
OpenWRT/LEDE:
Desktop distros:
linux內核調試工具:
Dynamic Probes is one of the popular debugging tool for Linux which developed by IBM. This tool allows the placement of a “probe” at almost any place in the system, in both user and kernel space. The probe consists of some code (written in a specialized, stack-oriented language) that is executed when control hits the given point. Resources regarding dprobes / kprobes listed below
- http://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaax/dprobesltt.pdf
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.6212&rep=rep1&type=pdf
- https://www.redhat.com/magazine/005mar05/features/kprobes/
- https://sourceware.org/systemtap/kprobes/
- http://www.ibm.com/developerworks/library/l-kprobes/index.html
- https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.kprobes.html
Linux Trace Toolkit is a kernel patch and a set of related utilities that allow the tracing of events in the kernel. The trace includes timing information and can create a reasonably complete picture of what happened over a given period of time. Resources of LTT, LTT Viewer and LTT Next Generation
- http://elinux.org/Linux_Trace_Toolkit
- http://www.linuxjournal.com/article/3829
- http://multivax.blogspot.com/2010/11/introduction-to-linux-tracing-toolkit.html
MEMWATCH is an open source memory error detection tool. It works by defining MEMWATCH in gcc statement and by adding a header file to our code. Through this we can track memory leaks and memory corruptions. Resources regarding MEMWATCH
ftrace is a good tracing framework for Linux kernel. ftrace traces internal operations of the kernel. This tool included in the Linux kernel in 2.6.27. With its various tracer plugins, ftrace can be targeted at different static tracepoints, such as scheduling events, interrupts, memory-mapped I/O, CPU power state transitions, and operations related to file systems and virtualization. Also, dynamic tracking of kernel function calls is available, optionally restrictable to a subset of functions by using globs, and with the possibility to generate call graphs and provide stack usage. You can find a good tutorial of ftrace at https://events.linuxfoundation.org/slides/2010/linuxcon_japan/linuxcon_jp2010_rostedt.pdf
ltrace is a debugging utility in Linux, used to display the calls a user space application makes to shared libraries. This tool can be used to trace any dynamic library function call. It intercepts and records the dynamic library calls which are called by the executed process and the signals which are received by that process. It can also intercept and print the system calls executed by the program.
- http://www.ellexus.com/getting-started-with-ltrace-how-does-it-do-that/?doing_wp_cron=1425295977.1327838897705078125000
- http://developerblog.redhat.com/2014/07/10/ltrace-for-rhel-6-and-7/
KDB is the in-kernel debugger of the Linux kernel. KDB follows simplistic shell-style interface. We can use it to inspect memory, registers, process lists, dmesg, and even set breakpoints to stop in a certain location. Through KDB we can set breakpoints and execute some basic kernel run control (Although KDB is not source level debugger). Several handy resources regarding KDB
- http://www.drdobbs.com/open-source/linux-kernel-debugging/184406318
- http://elinux.org/KDB
- http://dev.man-online.org/man1/kdb/
- https://www.kernel.org/pub/linux/kernel/people/jwessel/kdb/usingKDB.html
KGDB is intended to be used as a source level debugger for the Linux kernel. It is used along with gdb to debug a Linux kernel. Two machines are required for using kgdb. One of these machines is a development machine and the other is the target machine. The kernel to be debugged runs on the target machine. The expectation is that gdb can be used to "break in" to the kernel to inspect memory, variables and look through call stack information similar to the way an application developer would use gdb to debug an application. It is possible to place breakpoints in kernel code and perform some limited execution stepping. Several handy resources regarding KGDB
Dynamic Probes is one of the popular debugging tool for Linux which developed by IBM. This tool allows the placement of a “probe” at almost any place in the system, in both user and kernel space. The probe consists of some code (written in a specialized, stack-oriented language) that is executed when control hits the given point. Resources regarding dprobes / kprobes listed below
- http://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaax/dprobesltt.pdf
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.6212&rep=rep1&type=pdf
- https://www.redhat.com/magazine/005mar05/features/kprobes/
- https://sourceware.org/systemtap/kprobes/
- http://www.ibm.com/developerworks/library/l-kprobes/index.html
- https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.kprobes.html
Linux Trace Toolkit is a kernel patch and a set of related utilities that allow the tracing of events in the kernel. The trace includes timing information and can create a reasonably complete picture of what happened over a given period of time. Resources of LTT, LTT Viewer and LTT Next Generation
- http://elinux.org/Linux_Trace_Toolkit
- http://www.linuxjournal.com/article/3829
- http://multivax.blogspot.com/2010/11/introduction-to-linux-tracing-toolkit.html
MEMWATCH is an open source memory error detection tool. It works by defining MEMWATCH in gcc statement and by adding a header file to our code. Through this we can track memory leaks and memory corruptions. Resources regarding MEMWATCH
ftrace is a good tracing framework for Linux kernel. ftrace traces internal operations of the kernel. This tool included in the Linux kernel in 2.6.27. With its various tracer plugins, ftrace can be targeted at different static tracepoints, such as scheduling events, interrupts, memory-mapped I/O, CPU power state transitions, and operations related to file systems and virtualization. Also, dynamic tracking of kernel function calls is available, optionally restrictable to a subset of functions by using globs, and with the possibility to generate call graphs and provide stack usage. You can find a good tutorial of ftrace at https://events.linuxfoundation.org/slides/2010/linuxcon_japan/linuxcon_jp2010_rostedt.pdf
ltrace is a debugging utility in Linux, used to display the calls a user space application makes to shared libraries. This tool can be used to trace any dynamic library function call. It intercepts and records the dynamic library calls which are called by the executed process and the signals which are received by that process. It can also intercept and print the system calls executed by the program.
- http://www.ellexus.com/getting-started-with-ltrace-how-does-it-do-that/?doing_wp_cron=1425295977.1327838897705078125000
- http://developerblog.redhat.com/2014/07/10/ltrace-for-rhel-6-and-7/
KDB is the in-kernel debugger of the Linux kernel. KDB follows simplistic shell-style interface. We can use it to inspect memory, registers, process lists, dmesg, and even set breakpoints to stop in a certain location. Through KDB we can set breakpoints and execute some basic kernel run control (Although KDB is not source level debugger). Several handy resources regarding KDB
- http://www.drdobbs.com/open-source/linux-kernel-debugging/184406318
- http://elinux.org/KDB
- http://dev.man-online.org/man1/kdb/
- https://www.kernel.org/pub/linux/kernel/people/jwessel/kdb/usingKDB.html
KGDB is intended to be used as a source level debugger for the Linux kernel. It is used along with gdb to debug a Linux kernel. Two machines are required for using kgdb. One of these machines is a development machine and the other is the target machine. The kernel to be debugged runs on the target machine. The expectation is that gdb can be used to "break in" to the kernel to inspect memory, variables and look through call stack information similar to the way an application developer would use gdb to debug an application. It is possible to place breakpoints in kernel code and perform some limited execution stepping. Several handy resources regarding KGDB