一、單例模式
1.定義
作為對象的創建模式,單例模式確保某一個類只有一個實例,而且自行實例化並向整個系統提供這個實例。這個類稱為單例類。
2.特點
單例類只能有一個實例。
單例類必須自己創建自己的唯一實例。
單例類必須給所有其他對象提供這一實例。
二、創建單例模式的方法
1.懶漢式,線程不安全
懶漢式其實是一種比較形象的稱謂。既然懶,那么在創建對象實例的時候就不着急。會一直等到馬上要使用對象實例的時候才會創建,懶人嘛,總是推脫不開的時候才會真正去執行工作,因此在裝載對象的時候不創建對象實例。
public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } }
這段代碼簡單明了,而且使用了懶加載模式,但是卻存在致命的問題。當有多個線程並行調用 getInstance() 的時候,就會創建多個實例。也就是說在多線程下不能正常工作。
2.懶漢式,線程安全
為了解決上面的問題,最簡單的方法是將整個 getInstance() 方法設為同步(synchronized)。
public static synchronized Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; }
雖然做到了線程安全,並且解決了多實例的問題,但是它並不高效。因為在任何時候只能有一個線程調用 getInstance() 方法。但是同步操作只需要在第一次調用時才被需要,即第一次創建單例實例對象時。這就引出了雙重檢驗鎖。
3.雙重檢驗鎖
雙重檢驗鎖模式(double checked locking pattern),是一種使用同步塊加鎖的方法。程序員稱其為雙重檢查鎖,因為會有兩次檢查 instance == null,一次是在同步塊外,一次是在同步塊內。為什么在同步塊內還要再檢驗一次?因為可能會有多個線程一起進入同步塊外的 if,如果在同步塊內不進行二次檢驗的話就會生成多個實例了。
public static Singleton getSingleton() { if (instance == null) { //Single Checked synchronized (Singleton.class) { if (instance == null) { //Double Checked instance = new Singleton(); } } } return instance ; }
這段代碼看起來很完美,很可惜,它是有問題。主要在於instance = new Singleton()這句,這並非是一個原子操作,事實上在 JVM 中這句話大概做了下面 3 件事情:
1.給 instance 分配內存
2.調用 Singleton 的構造函數來初始化成員變量
3.將instance對象指向分配的內存空間(執行完這步 instance 就為非 null 了)。
但是在 JVM 的即時編譯器中存在指令重排序的優化。也就是說上面的第二步和第三步的順序是不能保證的,最終的執行順序可能是 1-2-3 也可能是 1-3-2。如果是后者,則在 3 執行完畢、2 未執行之前,被線程二搶占了,這時 instance 已經是非 null 了(但卻沒有初始化),所以線程二會直接返回 instance,然后使用,然后順理成章地報錯。
我們只需要將 instance 變量聲明成 volatile 就可以了。
public class Singleton { private volatile static Singleton instance; //聲明成 volatile private Singleton (){} public static Singleton getSingleton() { if (instance == null) { synchronized (Singleton.class) { if (instance == null) { instance = new Singleton(); } } } return instance; } }
有些人認為使用 volatile 的原因是可見性,也就是可以保證線程在本地不會存有 instance 的副本,每次都是去主內存中讀取。但其實是不對的。使用 volatile 的主要原因是其另一個特性:禁止指令重排序優化。也就是說,在 volatile 變量的賦值操作后面會有一個內存屏障(生成的匯編代碼上),讀操作不會被重排序到內存屏障之前。比如上面的例子,取操作必須在執行完 1-2-3 之后或者 1-3-2 之后,不存在執行到 1-3 然后取到值的情況。
從「先行發生原則」的角度理解的話,就是對於一個 volatile 變量的寫操作都先行發生於后面對這個變量的讀操作(這里的“后面”是時間上的先后順序)。
但是特別注意在 Java 5 以前的版本使用了 volatile 的雙檢鎖還是有問題的。其原因是 Java 5 以前的 JMM (Java 內存模型)是存在缺陷的,即時將變量聲明成 volatile 也不能完全避免重排序,主要是 volatile 變量前后的代碼仍然存在重排序問題。這個 volatile 屏蔽重排序的問題在 Java 5 中才得以修復,所以在這之后才可以放心使用 volatile。
相信你不會喜歡這種復雜又隱含問題的方式,當然我們有更好的實現線程安全的單例模式的辦法。
4.餓漢式 static final field
餓漢式其實是一種比較形象的稱謂。既然餓,那么在創建對象實例的時候就比較着急,餓了嘛,於是在裝載類的時候就創建對象實例。
這種方法非常簡單,因為單例的實例被聲明成 static 和 final 變量了,在第一次加載類到內存中時就會初始化,所以創建實例本身是線程安全的。
public class Singleton{ //類加載時就初始化 private static final Singleton instance = new Singleton(); private Singleton(){} public static Singleton getInstance(){ return instance; } }
缺點是它不是一種懶加載模式(lazy initialization),單例會在加載類后一開始就被初始化,即使客戶端沒有調用 getInstance()方法。
餓漢式的創建方式在一些場景中將無法使用:譬如 Singleton 實例的創建是依賴參數或者配置文件的,在 getInstance() 之前必須調用某個方法設置參數給它,那樣這種單例寫法就無法使用了。
5.靜態內部類 static nested class
這種方法也是《Effective Java》上所推薦的。
public class Singleton { private static class SingletonHolder { private static final Singleton INSTANCE = new Singleton(); } private Singleton (){} public static final Singleton getInstance() { return SingletonHolder.INSTANCE; } }
這種寫法仍然使用JVM本身機制保證了線程安全問題。由於靜態單例對象沒有作為Singleton的成員變量直接實例化,因此類加載時不會實例化Singleton,第一次調用getInstance()時將加載內部類SingletonHolder,在該內部類中定義了一個static類型的變量INSTANCE ,此時會首先初始化這個成員變量,由Java虛擬機來保證其線程安全性,確保該成員變量只能初始化一次。由於getInstance()方法沒有任何線程鎖定,因此其性能不會造成任何影響。
由於 SingletonHolder 是私有的,除了 getInstance() 之外沒有辦法訪問它,因此它是懶漢式的;同時讀取實例的時候不會進行同步,沒有性能缺陷;也不依賴 JDK 版本。
6.枚舉 Enum
用枚舉寫單例實在太簡單了!這也是它最大的優點。下面這段代碼就是聲明枚舉實例的通常做法。
public enum EasySingleton{ INSTANCE; }
我們可以通過EasySingleton.INSTANCE來訪問實例,這比調用getInstance()方法簡單多了。創建枚舉默認就是線程安全的,所以不需要擔心double checked locking,而且還能防止反序列化導致重新創建新的對象。
三、總結
一般來說,單例模式有五種寫法:懶漢、餓漢、雙重檢驗鎖、靜態內部類、枚舉。上述所說都是線程安全的實現,上文中第一種方式線程不安全,排除。
一般情況下直接使用餓漢式就好了,如果明確要求要懶加載(lazy initialization)傾向於使用靜態內部類。如果涉及到反序列化創建對象時會試着使用枚舉的方式來實現單例。