59、Spark Streaming與Spark SQL結合使用之top3熱門商品實時統計案例


一、top3熱門商品實時統計案例

1、概述

Spark Streaming最強大的地方在於,可以與Spark Core、Spark SQL整合使用,之前已經通過transform、foreachRDD等算子看到,
如何將DStream中的RDD使用Spark Core執行批處理操作。現在就來看看,如何將DStream中的RDD與Spark SQL結合起來使用。

案例:每隔10秒,統計最近60秒的,每個種類的每個商品的點擊次數,然后統計出每個種類top3熱門的商品。


2、java案例

package cn.spark.study.streaming;

import java.util.ArrayList;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import scala.Tuple2;

/**
 * 與Spark SQL整合使用,top3熱門商品實時統計
 * @author Administrator
 *
 */
public class Top3HotProduct {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setMaster("local[2]")
                .setAppName("Top3HotProduct");  
        JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
        
        // 首先看一下,輸入日志的格式
        // leo iphone mobile_phone
        
        // 首先,獲取輸入數據流
        // 這里順帶提一句,之前沒有講過,就是說,我們的Spark Streaming的案例為什么都是基於socket的呢?
        // 因為方便啊。。。
        // 其實,企業里面,真正最常用的,都是基於Kafka這種數據源
        // 但是我覺得我們的練習,用socket也無妨,比較方便,而且一點也不影響學習
        // 因為不同的輸入來源的,不同之處,只是在創建輸入DStream的那一點點代碼
        // 所以,核心是在於之后的Spark Streaming的實時計算
        // 所以只要我們掌握了各個案例和功能的使用
        // 在企業里,切換到Kafka,易如反掌,因為我們之前都詳細講過,而且實驗過,實戰編碼過,將Kafka作為
        // 數據源的兩種方式了
        
        // 獲取輸入數據流
        JavaReceiverInputDStream<String> productClickLogsDStream = jssc.socketTextStream("spark1", 9999);
        
        // 然后,應該是做一個映射,將每個種類的每個商品,映射為(category_product, 1)的這種格式
        // 從而在后面可以使用window操作,對窗口中的這種格式的數據,進行reduceByKey操作
        // 從而統計出來,一個窗口中的每個種類的每個商品的,點擊次數
        JavaPairDStream<String, Integer> categoryProductPairsDStream = productClickLogsDStream
                .mapToPair(new PairFunction<String, String, Integer>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Tuple2<String, Integer> call(String productClickLog)
                            throws Exception {
                        String[] productClickLogSplited = productClickLog.split(" "); 
                        return new Tuple2<String, Integer>(productClickLogSplited[2] + "_" + 
                                productClickLogSplited[1], 1);
                    }
                    
                });
        
        // 然后執行window操作
        // 到這里,就可以做到,每隔10秒鍾,對最近60秒的數據,執行reduceByKey操作
        // 計算出來這60秒內,每個種類的每個商品的點擊次數
        JavaPairDStream<String, Integer> categoryProductCountsDStream = 
                categoryProductPairsDStream.reduceByKeyAndWindow(
                        
                        new Function2<Integer, Integer, Integer>() {

                            private static final long serialVersionUID = 1L;
                
                            @Override
                            public Integer call(Integer v1, Integer v2) throws Exception {
                                return v1 + v2;
                            }
                            
                        }, Durations.seconds(60), Durations.seconds(10));  
        
        // 然后針對60秒內的每個種類的每個商品的點擊次數
        // foreachRDD,在內部,使用Spark SQL執行top3熱門商品的統計
        categoryProductCountsDStream.foreachRDD(new Function<JavaPairRDD<String,Integer>, Void>() {
            
            private static final long serialVersionUID = 1L;

            @Override
            public Void call(JavaPairRDD<String, Integer> categoryProductCountsRDD) throws Exception {
                // 將該RDD,轉換為JavaRDD<Row>的格式
                JavaRDD<Row> categoryProductCountRowRDD = categoryProductCountsRDD.map(
                        
                        new Function<Tuple2<String,Integer>, Row>() {

                            private static final long serialVersionUID = 1L;

                            @Override
                            public Row call(Tuple2<String, Integer> categoryProductCount)
                                    throws Exception {
                                String category = categoryProductCount._1.split("_")[0];
                                String product = categoryProductCount._1.split("_")[1];
                                Integer count = categoryProductCount._2;
                                return RowFactory.create(category, product, count);   
                            }
                            
                        });
                
                // 然后,執行DataFrame轉換
                List<StructField> structFields = new ArrayList<StructField>();
                structFields.add(DataTypes.createStructField("category", DataTypes.StringType, true)); 
                structFields.add(DataTypes.createStructField("product", DataTypes.StringType, true));  
                structFields.add(DataTypes.createStructField("click_count", DataTypes.IntegerType, true));  
                StructType structType = DataTypes.createStructType(structFields);
                
                HiveContext hiveContext = new HiveContext(categoryProductCountsRDD.context());
                
                DataFrame categoryProductCountDF = hiveContext.createDataFrame(
                        categoryProductCountRowRDD, structType);
                
                // 將60秒內的每個種類的每個商品的點擊次數的數據,注冊為一個臨時表
                categoryProductCountDF.registerTempTable("product_click_log");  
                
                // 執行SQL語句,針對臨時表,統計出來每個種類下,點擊次數排名前3的熱門商品
                DataFrame top3ProductDF = hiveContext.sql(
                        "SELECT category,product,click_count "
                        + "FROM ("
                            + "SELECT "
                                + "category,"
                                + "product,"
                                + "click_count,"
                                + "row_number() OVER (PARTITION BY category ORDER BY click_count DESC) rank "
                            + "FROM product_click_log"  
                        + ") tmp "
                        + "WHERE rank<=3");
                
                // 這里說明一下,其實在企業場景中,可以不是打印的
                // 案例說,應該將數據保存到redis緩存、或者是mysql db中
                // 然后,應該配合一個J2EE系統,進行數據的展示和查詢、圖形報表
                
                top3ProductDF.show();      
                
                return null;
            }
            
        });
        
        jssc.start();
        jssc.awaitTermination();
        jssc.close();
    }
    
}


3、scala案例

package cn.spark.study.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.hive.HiveContext

/**
 * @author Administrator
 */
object Top3HotProduct {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local[2]")  
        .setAppName("Top3HotProduct")
    val ssc = new StreamingContext(conf, Seconds(1))
    
    val productClickLogsDStream = ssc.socketTextStream("spark1", 9999)  
    val categoryProductPairsDStream = productClickLogsDStream
        .map { productClickLog => (productClickLog.split(" ")(2) + "_" + productClickLog.split(" ")(1), 1)}
    val categoryProductCountsDStream = categoryProductPairsDStream.reduceByKeyAndWindow(
        (v1: Int, v2: Int) => v1 + v2, 
        Seconds(60), 
        Seconds(10))  
    
    categoryProductCountsDStream.foreachRDD(categoryProductCountsRDD => {
      val categoryProductCountRowRDD = categoryProductCountsRDD.map(tuple => {
        val category = tuple._1.split("_")(0)
        val product = tuple._1.split("_")(1)  
        val count = tuple._2
        Row(category, product, count)  
      })
      
      val structType = StructType(Array(
          StructField("category", StringType, true),
          StructField("product", StringType, true),
          StructField("click_count", IntegerType, true)))
          
      val hiveContext = new HiveContext(categoryProductCountsRDD.context)
      
      val categoryProductCountDF = hiveContext.createDataFrame(categoryProductCountRowRDD, structType)  
      
      categoryProductCountDF.registerTempTable("product_click_log")  
      
      val top3ProductDF = hiveContext.sql(
            "SELECT category,product,click_count "
            + "FROM ("
              + "SELECT "
                + "category,"
                + "product,"
                + "click_count,"
                + "row_number() OVER (PARTITION BY category ORDER BY click_count DESC) rank "
              + "FROM product_click_log"  
            + ") tmp "
            + "WHERE rank<=3")
            
      top3ProductDF.show()
    })
    
    ssc.start()
    ssc.awaitTermination()
  }
  
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM