Word2Vec其實就是通過學習文本來用詞向量的方式表征詞的語義信息,即通過一個嵌入空間使得語義上相似的單詞在該空間內距離很近。
Embedding其實就是一個映射,將單詞從原先所屬的空間映射到新的多維空間中,也就是把原先詞所在空間嵌入到一個新的空間中去。
Word2Vec模型實際上分為了兩個部分,第一部分為建立模型,第二部分是通過模型獲取嵌入詞向量。Word2Vec的整個建模過程實際上與自編碼器(auto-encoder)的思想很相似,即先基於訓練數據構建一個神經網絡,當這個模型訓練好以后,我們並不會用這個訓練好的模型處理新的任務,我們真正需要的是這個模型通過訓練數據所學得的參數,例如隱層的權重矩陣——后面我們將會看到這些權重在Word2Vec中實際上就是我們試圖去學習的“word vectors”。基於訓練數據建模的過程,我們給它一個名字叫“Fake Task”,意味着建模並不是我們最終的目的。
上面提到的這種方法實際上會在無監督特征學習(unsupervised feature learning)中見到,最常見的就是自編碼器(auto-encoder):通過在隱層將輸入進行編碼壓縮,繼而在輸出層將數據解碼恢復初始狀態,訓練完成后,我們會將輸出層“砍掉”,僅保留隱層。
https://www.leiphone.com/news/201706/QprrvzsrZCl4S2lw.html
基於Python版本的實現:
import math
import sys
import numpy as np
class Ngram:
def init(self, tokens):
self.tokens = tokens
self.count = 0
self.score = 0.0
def set_score(self, score):
self.score = score
def get_string(self):
return '_'.join(self.tokens)
class Corpus: #語料庫
def init(self, filename, word_phrase_passes, word_phrase_delta, word_phrase_threshold, word_phrase_filename):
i = 0
file_pointer = open(filename, 'r')
all_tokens = []
for line in file_pointer:
line_tokens = line.split()
for token in line_tokens:
token = token.lower() #大寫轉小寫
if len(token) > 1 and token.isalnum(): # isalnum() 方法檢測字符串是否由字母和數字組成
all_tokens.append(token)
i += 1
if i % 10000 == 0:
sys.stdout.flush() #刷新輸出
sys.stdout.write("\rReading corpus: %d" % i)
sys.stdout.flush()
print( "\rCorpus read: %d" % i)
file_pointer.close()
self.tokens = all_tokens
for x in range(1, word_phrase_passes + 1):
self.build_ngrams(x, word_phrase_delta, word_phrase_threshold, word_phrase_filename)
self.save_to_file(filename)
def build_ngrams(self, x, word_phrase_delta, word_phrase_threshold, word_phrase_filename):
ngrams = []
ngram_map = {}
token_count_map = {}
for token in self.tokens:
if token not in token_count_map:
token_count_map[token] = 1
else:
token_count_map[token] += 1
i = 0
ngram_l = []
for token in self.tokens:
if len(ngram_l) == 2:
ngram_l.pop(0)
ngram_l.append(token)
ngram_t = tuple(ngram_l)
if ngram_t not in ngram_map:
ngram_map[ngram_t] = len(ngrams)
ngrams.append(Ngram(ngram_t))
ngrams[ngram_map[ngram_t]].count += 1
i += 1
if i % 10000 == 0:
sys.stdout.flush()
sys.stdout.write("\rBuilding n-grams (%d pass): %d" % (x, i))
sys.stdout.flush()
print( "\rn-grams (%d pass) built: %d" % (x, i))
filtered_ngrams_map = {}
file_pointer = open(word_phrase_filename + ('-%d' % x), 'w')
# http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
i = 0
for ngram in ngrams:
product = 1
for word_string in ngram.tokens:
product *= token_count_map[word_string]
ngram.set_score((float(ngram.count) - word_phrase_delta) / float(product))
if ngram.score > word_phrase_threshold:
filtered_ngrams_map[ngram.get_string()] = ngram
file_pointer.write('%s %d\n' % (ngram.get_string(), ngram.count))
i += 1
if i % 10000 == 0:
sys.stdout.flush()
sys.stdout.write("\rScoring n-grams: %d" % i)
sys.stdout.flush()
print( "\rScored n-grams: %d, filtered n-grams: %d" % (i, len(filtered_ngrams_map)))
file_pointer.close()
# Combining the tokens
all_tokens = []
i = 0
while i < len(self.tokens):
if i + 1 < len(self.tokens):
ngram_l = []
ngram_l.append(self.tokens[i])
ngram_l.append(self.tokens[i+1])
ngram_string = '_'.join(ngram_l)
if len(ngram_l) == 2 and (ngram_string in filtered_ngrams_map):
ngram = filtered_ngrams_map[ngram_string]
all_tokens.append(ngram.get_string())
i += 2
else:
all_tokens.append(self.tokens[i])
i += 1
else:
all_tokens.append(self.tokens[i])
i += 1
print("Tokens combined")
self.tokens = all_tokens
def save_to_file(self, filename):
i = 1
filepointer = open('preprocessed-' + filename, 'w')
line = ''
for token in self.tokens:
if i % 20 == 0:
line += token
filepointer.write('%s\n' % line)
line = ''
else:
line += token + ' '
i += 1
if i % 10000 == 0:
sys.stdout.flush()
sys.stdout.write("\rWriting to preprocessed input file")
sys.stdout.flush()
print ("\rPreprocessed input file written")
filepointer.close()
def __getitem__(self, i):
return self.tokens[i]
def __len__(self):
return len(self.tokens)
def __iter__(self):
return iter(self.tokens)
class Word:
def init(self, word):
self.word = word
self.count = 0
class Vocabulary:
def init(self, corpus, min_count):
self.words = []
self.word_map = {}
self.build_words(corpus, min_count)
self.filter_for_rare_and_common()
def build_words(self, corpus, min_count):
words = []
word_map = {}
i = 0
for token in corpus:
if token not in word_map:
word_map[token] = len(words)
words.append(Word(token))
words[word_map[token]].count += 1
i += 1
if i % 10000 == 0:
sys.stdout.flush()
sys.stdout.write("\rBuilding vocabulary: %d" % len(words))
sys.stdout.flush()
print("\rVocabulary built: %d" % len(words))
self.words = words
self.word_map = word_map # Mapping from each token to its index in vocab
def __getitem__(self, i):
return self.words[i]
def __len__(self):
return len(self.words)
def __iter__(self):
return iter(self.words)
def __contains__(self, key):
return key in self.word_map
def indices(self, tokens):
return [self.word_map[token] if token in self else self.word_map['{rare}'] for token in tokens]
def filter_for_rare_and_common(self):
# Remove rare words and sort
tmp = []
tmp.append(Word('{rare}'))
unk_hash = 0
count_unk = 0
for token in self.words:
if token.count < min_count:
count_unk += 1
tmp[unk_hash].count += token.count
else:
tmp.append(token)
tmp.sort(key=lambda token : token.count, reverse=True)
# Update word_map
word_map = {}
for i, token in enumerate(tmp):
word_map[token.word] = i
self.words = tmp
self.word_map = word_map
pass
class TableForNegativeSamples:
def init(self, vocab):
power = 0.75
norm = sum([math.pow(t.count, power) for t in vocab]) # Normalizing constants
table_size = int(1e6)
table = np.zeros(table_size, dtype=np.uint32)
p = 0 # Cumulative probability
i = 0
for j, word in enumerate(vocab):
p += float(math.pow(word.count, power))/norm
while i < table_size and float(i) / table_size < p:
table[i] = j
i += 1
self.table = table
def sample(self, count):
indices = np.random.randint(low=0, high=len(self.table), size=count)
return [self.table[i] for i in indices]
def sigmoid(z):
if z > 6:
return 1.0
elif z < -6:
return 0.0
else:
return 1 / (1 + math.exp(-z))
def save(vocab, nn0, filename):
file_pointer = open(filename, 'w')
for token, vector in zip(vocab, nn0):
word = token.word.replace(' ', '_')
vector_str = ' '.join([str(s) for s in vector])
file_pointer.write('%s %s\n' % (word, vector_str))
file_pointer.close()
if name == 'main':
for input_filename in ['in.txt']:
#for input_filename in ['news-2012-phrases-10000.txt']:
# Number of negative examples
k_negative_sampling = 5
# Min count for words to be used in the model, else {rare}
min_count = 3
# Number of word phrase passes
word_phrase_passes = 3 # 3
# min count for word phrase formula
word_phrase_delta = 3 # 5
# Threshold for word phrase creation
word_phrase_threshold = 1e-4
# Read the corpus 讀取語料庫
corpus = Corpus(input_filename, word_phrase_passes, word_phrase_delta, word_phrase_threshold, 'phrases-%s' % input_filename)
# Read train file to init vocab讀取訓練文件初始化vocab
vocab = Vocabulary(corpus, min_count)
table = TableForNegativeSamples(vocab)
# Max window length
for window in [5]: # 5 for large set
# Dimensionality of word embeddings
for dim in [100]: # 100
print( "Training: %s-%d-%d-%d" % (input_filename, window, dim, word_phrase_passes))
# Initialize network
nn0 = np.random.uniform(low=-0.5/dim, high=0.5/dim, size=(len(vocab), dim))
nn1 = np.zeros(shape=(len(vocab), dim))
# Initial learning rate
initial_alpha = 0.01 # 0.01
# Modified in loop
global_word_count = 0
alpha = initial_alpha
word_count = 0
last_word_count = 0
tokens = vocab.indices(corpus)
for token_idx, token in enumerate(tokens):
if word_count % 10000 == 0:
global_word_count += (word_count - last_word_count)
last_word_count = word_count
# Recalculate alpha
# alpha = initial_alpha * (1 - float(global_word_count) / len(corpus))
# if alpha < initial_alpha * 0.0001:
# alpha = initial_alpha * 0.0001
sys.stdout.flush()
sys.stdout.write("\rTraining: %d of %d" % (global_word_count, len(corpus)))
# Randomize window size, where win is the max window size
current_window = np.random.randint(low=1, high=window+1)
context_start = max(token_idx - current_window, 0)
context_end = min(token_idx + current_window + 1, len(tokens))
context = tokens[context_start:token_idx] + tokens[token_idx+1:context_end] # Turn into an iterator?
for context_word in context:
# Init neu1e with zeros
neu1e = np.zeros(dim)
classifiers = [(token, 1)] + [(target, 0) for target in table.sample(k_negative_sampling)]
for target, label in classifiers:
z = np.dot(nn0[context_word], nn1[target])
p = sigmoid(z)
g = alpha * (label - p)
neu1e += g * nn1[target] # Error to backpropagate to nn0
nn1[target] += g * nn0[context_word] # Update nn1
# Update nn0
nn0[context_word] += neu1e
word_count += 1
global_word_count += (word_count - last_word_count)
sys.stdout.flush()
print("\rTraining finished: %d" % global_word_count)
# Save model to file
save(vocab, nn0, 'output-%s-%d-%d-%d' % (input_filename, window, dim, word_phrase_passes))
基於tensorflow版本的實現
import time
import numpy as np
import tensorflow as tf
import random
from collections import Counter
主要包括以下四個部分的代碼:
數據預處理:替換文本中特殊符號並去除低頻詞;對文本分詞;構建語料;單詞映射表
訓練樣本構建
模型構建
模型驗證
首先加載數據
with open('text8') as f:
text = f.read()
定義函數來完成數據的預處理
def preprocess(text, freq=5):
'''
對文本進行預處理
參數
---
text: 文本數據
freq: 詞頻閾值
'''
# 對文本中的符號進行替換
text = text.lower()
text = text.replace('.', ' <PERIOD> ')
text = text.replace(',', ' <COMMA> ')
text = text.replace('"', ' <QUOTATION_MARK> ')
text = text.replace(';', ' <SEMICOLON> ')
text = text.replace('!', ' <EXCLAMATION_MARK> ')
text = text.replace('?', ' <QUESTION_MARK> ')
text = text.replace('(', ' <LEFT_PAREN> ')
text = text.replace(')', ' <RIGHT_PAREN> ')
text = text.replace('--', ' <HYPHENS> ')
text = text.replace('?', ' <QUESTION_MARK> ')
# text = text.replace('\n', ' <NEW_LINE> ')
text = text.replace(':', ' <COLON> ')
words = text.split()
# 刪除低頻詞,減少噪音影響
word_counts = Counter(words)
trimmed_words = [word for word in words if word_counts[word] > freq]
return trimmed_words
清洗文本並分詞
words = preprocess(text)
print(words[:20])
構建映射表
vocab = set(words)
vocab_to_int = {w: c for c, w in enumerate(vocab)}
int_to_vocab = {c: w for c, w in enumerate(vocab)}
enumerate()是用來遍歷一個可迭代容器中的元素,同時通過一個計數器變量記錄當前元素所對應的索引值。
print("total words: {}".format(len(words)))
print("unique words: {}".format(len(set(words))))
整個文本中單詞大約為1660萬規模,詞典大小為6萬左右
訓練樣本構建
skip-gram中,訓練樣本的形式是(input word, output word),其中output word是input word的上下文。
為了減少模型噪音並加速訓練速度,我們在構造batch之前要對樣本進行采樣,剔除停用詞等噪音因素。
采樣:對樣本進行抽樣,剔除高頻的停用詞來減少模型的噪音,並加速訓練。
對原文本進行vocab到int的轉換
int_words = [vocab_to_int[w] for w in words]
t = 1e-5 # t值
threshold = 0.8 # 剔除概率閾值
統計單詞出現頻次
int_word_counts = Counter(int_words)
total_count = len(int_words)
計算單詞頻率
word_freqs = {w: c/total_count for w, c in int_word_counts.items()}
計算被刪除的概率
prob_drop = {w: 1 - np.sqrt(t / word_freqs[w]) for w in int_word_counts}
對單詞進行采樣
train_words = [w for w in int_words if prob_drop[w] < threshold]
print(len(train_words))
構建batch
Skip-Gram模型是通過輸入詞來預測上下文。
對於一個給定詞,離它越近的詞可能與它越相關,離它越遠的詞越不相關,這里我們設置窗口大小為5,對於每個訓練單詞,我們還會在[1:5]之間隨機生成一個整數R,
用R作為我們最終選擇output word的窗口大小。這里之所以多加了一步隨機數的窗口重新選擇步驟,是為了能夠讓模型更聚焦於當前input word的鄰近詞。
def get_targets(words, idx, window_size=5):
'''
獲得input word的上下文單詞列表
參數
---
words: 單詞列表
idx: input word的索引號
window_size: 窗口大小
'''
target_window = np.random.randint(1, window_size + 1)
# 這里要考慮input word前面單詞不夠的情況
start_point = idx - target_window if (idx - target_window) > 0 else 0
end_point = idx + target_window
# output words(即窗口中的上下文單詞)
targets = set(words[start_point: idx] + words[idx + 1: end_point + 1])
return list(targets)
def get_batches(words, batch_size, window_size=5):
'''
構造一個獲取batch的生成器
'''
n_batches = len(words) // batch_size
# 僅取full batches
words = words[:n_batches * batch_size]
for idx in range(0, len(words), batch_size):
x, y = [], []
batch = words[idx: idx + batch_size]
for i in range(len(batch)):
batch_x = batch[i]
batch_y = get_targets(batch, i, window_size)
# 由於一個input word會對應多個output word,因此需要長度統一
x.extend([batch_x] * len(batch_y))
y.extend(batch_y)
yield x, y
構建網絡
該部分包括:輸入層,嵌入,負采樣
train_graph = tf.Graph()
with train_graph.as_default():
inputs = tf.placeholder(tf.int32, shape=[None], name='inputs')
labels = tf.placeholder(tf.int32, shape=[None, None], name='labels')
# 嵌入
# 嵌入矩陣的矩陣形狀為 vocab_size*hidden_units_size
vocab_size = len(int_to_vocab)
embedding_size = 200 # 嵌入維度
with train_graph.as_default():
# 嵌入層權重矩陣
embedding = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1, 1))#tf.random_uniform 從均勻分布中輸出隨機值
# 實現lookup
embed = tf.nn.embedding_lookup(embedding, inputs)
#tf.nn.embedding_lookup函數的用法主要是:選取一個張量里面索引對應的元素。
# tf.nn.embedding_lookup(tensor, id):tensor就是輸入張量,id就是張量對應的索引,
負采樣:負采樣主要是為了解決梯度下降計算速度慢的問題
# ensorFlow中的tf.nn.sampled_softmax_loss會在softmax層上進行采樣計算損失,計算出的loss要比full softmax loss低。
n_sampled = 100
with train_graph.as_default():
softmax_w = tf.Variable(tf.truncated_normal([vocab_size, embedding_size], stddev=0.1))
softmax_b = tf.Variable(tf.zeros(vocab_size))
# 計算negative sampling下的損失
loss = tf.nn.sampled_softmax_loss(softmax_w, softmax_b, labels, embed, n_sampled, vocab_size)
cost = tf.reduce_mean(loss)
optimizer = tf.train.AdamOptimizer().minimize(cost)
模型驗證
with train_graph.as_default():
# 隨機挑選一些單詞
valid_size = 16
valid_window = 100
# 從不同位置各選8個單詞
valid_examples = np.array(random.sample(range(valid_window), valid_size // 2))
valid_examples = np.append(valid_examples,
random.sample(range(1000, 1000 + valid_window), valid_size // 2))
valid_size = len(valid_examples)
# 驗證單詞集
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# 計算每個詞向量的模並進行單位化
norm = tf.sqrt(tf.reduce_sum(tf.square(embedding), 1, keep_dims=True))
normalized_embedding = embedding / norm
# 查找驗證單詞的詞向量
valid_embedding = tf.nn.embedding_lookup(normalized_embedding, valid_dataset)
# 計算余弦相似度
similarity = tf.matmul(valid_embedding, tf.transpose(normalized_embedding))
epochs = 10 # 迭代輪數
batch_size = 1000 # batch大小
window_size = 10 # 窗口大小
with train_graph.as_default():
saver = tf.train.Saver() # 文件存儲
with tf.Session(graph=train_graph) as sess:
iteration = 1
loss = 0
sess.run(tf.global_variables_initializer())
for e in range(1, epochs + 1):
batches = get_batches(train_words, batch_size, window_size)
start = time.time()
#
for x, y in batches:
feed = {inputs: x,
labels: np.array(y)[:, None]}
train_loss, _ = sess.run([cost, optimizer], feed_dict=feed)
loss += train_loss
if iteration % 100 == 0:
end = time.time()
print("Epoch {}/{}".format(e, epochs),
"Iteration: {}".format(iteration),
"Avg. Training loss: {:.4f}".format(loss / 100),
"{:.4f} sec/batch".format((end - start) / 100))
loss = 0
start = time.time()
# 計算相似的詞
if iteration % 1000 == 0:
# 計算similarity
sim = similarity.eval()
for i in range(valid_size):
valid_word = int_to_vocab[valid_examples[i]]
top_k = 8 # 取最相似單詞的前8個
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log = 'Nearest to [%s]:' % valid_word
for k in range(top_k):
close_word = int_to_vocab[nearest[k]]
log = '%s %s,' % (log, close_word)
print(log)
iteration += 1
save_path = saver.save(sess, "checkpoints/text8.ckpt")
embed_mat = sess.run(normalized_embedding)
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
viz_words = 500
tsne = TSNE()
embed_tsne = tsne.fit_transform(embed_mat[:viz_words, :])
fig, ax = plt.subplots(figsize=(14, 14))
for idx in range(viz_words):
plt.scatter(*embed_tsne[idx, :], color='steelblue')
plt.annotate(int_to_vocab[idx], (embed_tsne[idx, 0], embed_tsne[idx, 1]), alpha=0.7)
