Luogu2481 SDOI2010 代碼拍賣會 DP、組合


傳送門


神仙DP

注意到\(N \leq 10^{18}\),不能夠直接數位DP,於是考慮形成的\(N\)位數的性質。

因為低位一定不會比高位小,所以所有滿足條件的\(N\)位數一定是不超過\(9\)\(f(x)(x \in [1,N])\)的和,其中\(f(x) = \sum\limits_{i=0}^{x-1} 10^i\),且其中一定有一個\(f(N)\)

考慮由\(f(x)\ \bmod\ P\)形成的數列,因為\(f(x) = 10f(x-1) + 1\),所以這個數列一定會存在一個不超過\(P\)的循環節。那么我們可以通過這個預處理出\(cnt_i = \sum\limits_{x=1}^N[f(x) \mod P = i]\),同時求出\(f(N)\ \bmod\ P\)的值。

接下來就可以DP了:設\(f_{i,j,k}\)表示考慮了\(cnt_0 \sim cnt_{i-1}\),選擇了\(k\)\(f(x)\),它們的和\(\bmod\ P = j\)的方案數。轉移考慮枚舉\(cnt_i\)中選擇多少個,這就是一個插板法,轉移系數是一個組合數。

最后的答案就是\(\sum\limits_{i=0}^8 f_{P,(P - f(N))\ \bmod P,i}\)\(i\)最大為\(8\)的原因是必須要選擇一個\(f(N)\)

#include<bits/stdc++.h>
using namespace std;

#define int long long
const int MOD = 999911659;
int dp[503][503][9] , Cnt[503] , dir[503] , N , P;

int poww(int a , int b){
	int times = 1;
	while(b){
		if(b & 1) times = times * a % MOD;
		a = a * a % MOD; b >>= 1;
	}
	return times;
}

int binom(int a , int b){
	int times = 1;
	for(int i = a ; i > a - b ; --i)
		times = times * i % MOD * poww(a - i + 1 , MOD - 2) % MOD;
	return times;
}

signed main(){
	cin >> N >> P;
	int cur = 1 % P , cnt = 1 , tmp = 1 % P , ed;
	do{dir[cur] = cnt; ++cnt; cur = (cur * 10 + 1) % P;}while(!dir[cur]);
	for(int i = 1 ; i < dir[cur] && i <= N ; ++i , tmp = (tmp * 10 + 1) % P) ++Cnt[ed = tmp];
	if(dir[cur] <= N){
		for(int i = dir[cur] ; i < cnt ; ++i , tmp = (tmp * 10 + 1) % P) Cnt[ed = tmp] = (N - dir[cur] + 1) / (cnt - dir[cur]) % MOD;
		for(int i = 1 ; i <= (N - dir[cur] + 1) % (cnt - dir[cur]) ; ++i , tmp = (tmp * 10 + 1) % P) ++Cnt[ed = tmp];
	}
	dp[0][0][0] = 1;
	for(int i = 0 ; i < P ; ++i)
		for(int j = 0 ; j <= 8 ; ++j){
			int val = binom(Cnt[i] + j - 1 , j);
			if(!val) continue;
			for(int k = 0 ; k < P ; ++k)
				for(int l = 0 ; l + j <= 8 ; ++l)
					dp[i + 1][(k + i * j) % P][l + j] = (dp[i + 1][(k + i * j) % P][l + j] + val * dp[i][k][l]) % MOD;
		}
	int sum = 0;
	for(int i = 0 ; i <= 8 ; ++i)
		sum = (sum + dp[P][(P - ed) % P][i]) % MOD;
	cout << sum;
	return 0;
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM