CW攻擊原論文地址——https://arxiv.org/pdf/1608.04644.pdf
1.CW攻擊的原理
CW攻擊是一種基於優化的攻擊,攻擊的名稱是兩個作者的首字母。首先還是貼出攻擊算法的公式表達:
下面解釋下算法的大概思想,該算法將對抗樣本當成一個變量,那么現在如果要使得攻擊成功就要滿足兩個條件:(1)對抗樣本和對應的干凈樣本應該差距越小越好;(2)對抗樣本應該使得模型分類錯,且錯的那一類的概率越高越好。
其實上述公式的兩部分loss也就是基於這兩點而得到的,首先說第一部分,rn對應着干凈樣本和對抗樣本的差,但作者在這里有個小trick,他把對抗樣本映射到了tanh空間里面,這樣做有什么好處呢?如果不做變換,那么x只能在(0,1)這個范圍內變換,做了這個變換 ,x可以在-inf到+inf做變換,有利於優化。
再來說說第二部分,公式中的Z(x)表示的是樣本x通過模型未經過softmax的輸出向量,對於干凈的樣本來說,這個這個向量的最大值對應的就是正確的類別(如果分類正確的話),現在我們將類別t(也就是我們最后想要攻擊成的類別)所對應的邏輯值記為,將最大的值(對應類別不同於t)記為
,如果通過優化使得
變小,攻擊不就離成功了更近嘛。那么式子中的k是什么呢?k其實就是置信度(confidence),可以理解為,k越大,那么模型分錯,且錯成的那一類的概率越大。但與此同時,這樣的對抗樣本就更難找了。最后就是常數c,這是一個超參數,用來權衡兩個loss之間的關系,在原論文中,作者使用二分查找來確定c值。
下面總結一下CW攻擊:
CW是一個基於優化的攻擊,主要調節的參數是c和k,看你自己的需要了。它的優點在於,可以調節置信度,生成的擾動小,可以破解很多的防御方法,缺點是,很慢~~~
最后在說一下,就是在某些防御論文中,它實現CW攻擊,是直接用替換PGD中的loss,其余步驟和PGD一模一樣。
2.CW代碼實現
class CarliniWagnerL2Attack(Attack, LabelMixin): def __init__(self, predict, num_classes, confidence=0, targeted=False, learning_rate=0.01, binary_search_steps=9, max_iterations=10000, abort_early=True, initial_const=1e-3, clip_min=0., clip_max=1., loss_fn=None): """ Carlini Wagner L2 Attack implementation in pytorch Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017. https://arxiv.org/abs/1608.04644 learning_rate: the learning rate for the attack algorithm max_iterations: the maximum number of iterations binary_search_steps: number of binary search times to find the optimum abort_early: if set to true, abort early if getting stuck in local min confidence: confidence of the adversarial examples targeted: TODO """ if loss_fn is not None: import warnings warnings.warn( "This Attack currently do not support a different loss" " function other than the default. Setting loss_fn manually" " is not effective." ) loss_fn = None super(CarliniWagnerL2Attack, self).__init__( predict, loss_fn, clip_min, clip_max) self.learning_rate = learning_rate self.max_iterations = max_iterations self.binary_search_steps = binary_search_steps self.abort_early = abort_early self.confidence = confidence self.initial_const = initial_const self.num_classes = num_classes # The last iteration (if we run many steps) repeat the search once. self.repeat = binary_search_steps >= REPEAT_STEP self.targeted = targeted def _loss_fn(self, output, y_onehot, l2distsq, const): # TODO: move this out of the class and make this the default loss_fn # after having targeted tests implemented real = (y_onehot * output).sum(dim=1) # TODO: make loss modular, write a loss class other = ((1.0 - y_onehot) * output - (y_onehot * TARGET_MULT) ).max(1)[0] # - (y_onehot * TARGET_MULT) is for the true label not to be selected if self.targeted: loss1 = clamp(other - real + self.confidence, min=0.) else: loss1 = clamp(real - other + self.confidence, min=0.) loss2 = (l2distsq).sum() loss1 = torch.sum(const * loss1) loss = loss1 + loss2 return loss def _is_successful(self, output, label, is_logits): # determine success, see if confidence-adjusted logits give the right # label if is_logits: output = output.detach().clone() if self.targeted: output[torch.arange(len(label)), label] -= self.confidence else: output[torch.arange(len(label)), label] += self.confidence pred = torch.argmax(output, dim=1) else: pred = output if pred == INVALID_LABEL: return pred.new_zeros(pred.shape).byte() return is_successful(pred, label, self.targeted) def _forward_and_update_delta( self, optimizer, x_atanh, delta, y_onehot, loss_coeffs): optimizer.zero_grad() adv = tanh_rescale(delta + x_atanh, self.clip_min, self.clip_max) transimgs_rescale = tanh_rescale(x_atanh, self.clip_min, self.clip_max) output = self.predict(adv) l2distsq = calc_l2distsq(adv, transimgs_rescale) loss = self._loss_fn(output, y_onehot, l2distsq, loss_coeffs) loss.backward() optimizer.step() return loss.item(), l2distsq.data, output.data, adv.data def _get_arctanh_x(self, x): result = clamp((x - self.clip_min) / (self.clip_max - self.clip_min), min=self.clip_min, max=self.clip_max) * 2 - 1 return torch_arctanh(result * ONE_MINUS_EPS) def _update_if_smaller_dist_succeed( self, adv_img, labs, output, l2distsq, batch_size, cur_l2distsqs, cur_labels, final_l2distsqs, final_labels, final_advs): target_label = labs output_logits = output _, output_label = torch.max(output_logits, 1) mask = (l2distsq < cur_l2distsqs) & self._is_successful( output_logits, target_label, True) cur_l2distsqs[mask] = l2distsq[mask] # redundant cur_labels[mask] = output_label[mask] mask = (l2distsq < final_l2distsqs) & self._is_successful( output_logits, target_label, True) final_l2distsqs[mask] = l2distsq[mask] final_labels[mask] = output_label[mask] final_advs[mask] = adv_img[mask] def _update_loss_coeffs( self, labs, cur_labels, batch_size, loss_coeffs, coeff_upper_bound, coeff_lower_bound): # TODO: remove for loop, not significant, since only called during each # binary search step for ii in range(batch_size): cur_labels[ii] = int(cur_labels[ii]) if self._is_successful(cur_labels[ii], labs[ii], False): coeff_upper_bound[ii] = min( coeff_upper_bound[ii], loss_coeffs[ii]) if coeff_upper_bound[ii] < UPPER_CHECK: loss_coeffs[ii] = ( coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2 else: coeff_lower_bound[ii] = max( coeff_lower_bound[ii], loss_coeffs[ii]) if coeff_upper_bound[ii] < UPPER_CHECK: loss_coeffs[ii] = ( coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2 else: loss_coeffs[ii] *= 10 def perturb(self, x, y=None): x, y = self._verify_and_process_inputs(x, y) # Initialization if y is None: y = self._get_predicted_label(x) x = replicate_input(x) batch_size = len(x) coeff_lower_bound = x.new_zeros(batch_size) coeff_upper_bound = x.new_ones(batch_size) * CARLINI_COEFF_UPPER loss_coeffs = torch.ones_like(y).float() * self.initial_const final_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size final_labels = [INVALID_LABEL] * batch_size final_advs = x x_atanh = self._get_arctanh_x(x) y_onehot = to_one_hot(y, self.num_classes).float() final_l2distsqs = torch.FloatTensor(final_l2distsqs).to(x.device) final_labels = torch.LongTensor(final_labels).to(x.device) # Start binary search for outer_step in range(self.binary_search_steps): delta = nn.Parameter(torch.zeros_like(x)) optimizer = optim.Adam([delta], lr=self.learning_rate) cur_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size cur_labels = [INVALID_LABEL] * batch_size cur_l2distsqs = torch.FloatTensor(cur_l2distsqs).to(x.device) cur_labels = torch.LongTensor(cur_labels).to(x.device) prevloss = PREV_LOSS_INIT if (self.repeat and outer_step == (self.binary_search_steps - 1)): loss_coeffs = coeff_upper_bound for ii in range(self.max_iterations): loss, l2distsq, output, adv_img = \ self._forward_and_update_delta( optimizer, x_atanh, delta, y_onehot, loss_coeffs) if self.abort_early: if ii % (self.max_iterations // NUM_CHECKS or 1) == 0: if loss > prevloss * ONE_MINUS_EPS: break prevloss = loss self._update_if_smaller_dist_succeed( adv_img, y, output, l2distsq, batch_size, cur_l2distsqs, cur_labels, final_l2distsqs, final_labels, final_advs) self._update_loss_coeffs( y, cur_labels, batch_size, loss_coeffs, coeff_upper_bound, coeff_lower_bound) return final_advs