nano pi M4+tensorflow+opencv+logi攝像頭實現目標檢測


 

做物體檢測的網絡有很多種,如faster rcnn,ssd,yolo等等,通過不同維度的對比,各個網絡都有各自的優勢。
畢竟nano pi M4計算能力有限,我們這里先選擇專門為速度優化過最快的網絡SSD,以及經典的faster-rcnn作對比,再加上能顯示mask的高端網絡,,,
事實上yolo v3剛出來,比SSD更快,而faster rcnn相對來說運行慢的多了,后面可以都嘗試對比一下,目前先把基線系統搭建好。

環境:

          系統:rk3399-sd-friendlydesktop-bionic-4.4-arm64

                     python2.7

                    tensorflow1.8.0

                   opencv

平台:

                  nano pi M4 2G版

                   logi攝像頭

                  TF卡32G

1、進入這個網站下載適合的tensorflow版本:https://github.com/lhelontra/tensorflow-on-arm/releases/download/v1.8.0這里使用tensorflow1.8.0;

      sudo pip install tensorflow-1.8.0-cp27-none-linux_aarch64.whl

      或者:在線下載安裝wget https://github.com/lhelontra/tensorflow-on-arm/releases/download/v1.8.0/tensorflow-1.8.0-cp27-none-linux_aarch64.whl

                                       sudo pip install tensorflow-1.8.0-cp27-none-linux_aarch64.whl

 

2、安裝matplotlib庫

      sudo pip install matplotlib

3、opencv安裝sudo pip install opencv-python

4、下載tensorflow提供的models API並解壓,下載模型git clone https://github.com/tensorflow/models.git

5、下載用COCO訓練集預訓練的模型
      下載訓練好的模型並放到上一步models_master下的object_detection/models目錄

        

6、Protobuf 安裝與配置   

protobuf是Google開發的一種混合語言數據標准,提供了一種輕便高效的結構化數據存儲格式,可以用於結構化數據序列化。很適合做數據存儲或 RPC 數據交換格式。可用於通訊協議、數據存儲等領域的語言無關、平台無關、可擴展的序列化結構數據格式。目前提供了 C++、Java、Python 三種語言的 API。
下載地址: https://github.com/google/protobuf/releases
我們這里下載最新版本 protobuf-all-3.5.1.tar.gz
安裝:
tar -xf  protobuf-all-3.5.1.tar.gz  
cd protobuf-3.5.1  
./configure   
make   
make check   ->這一步是檢查編譯是否正確,耗時非常長,可略過
sudo make install  
sudo ldconfig  ->更新庫搜索路徑,否則可能找不到庫文件

 將proto格式的數據轉換為python格式,從而可以在python腳本中調用,進入目錄models-master/research,運行:

protoc object_detection/protos/*.proto --python_out=.

轉換完畢后可以看到在object_detection/protos/目錄下多了許多*.py文件。

7、測試代碼

    

import numpy as np
import os
import sys
import tarfile
import tensorflow as tf
import cv2
import time
from collections import defaultdict

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("../..")

from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2018_01_28'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/home/pi/models/research/object_detection/data', 'mscoco_label_map.pbtxt')

model_path = "/home/pi/models/research/object_detection/models/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt"
#extract the ssd_mobilenet
start = time.clock()
NUM_CLASSES = 90

end= time.clock()
print('load the model' ,(end -start))
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

cap = cv2.VideoCapture(0)
with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        writer = tf.summary.FileWriter("logs/", sess.graph)
        sess.run(tf.global_variables_initializer())

        loader = tf.train.import_meta_graph(model_path + '.meta')
        loader.restore(sess, model_path)
        while(1):
            start = time.clock()
            ret, frame = cap.read()
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
            image_np =frame
        # the array based representation of the image will be used later in order to prepare the
        # result image with boxes and labels on it.
        # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
            image_np_expanded = np.expand_dims(image_np, axis=0)
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Each box represents a part of the image where a particular object was detected.
            boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            scores = detection_graph.get_tensor_by_name('detection_scores:0')
            classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')
            # Actual detection.
            (boxes, scores, classes, num_detections) = sess.run(
                [boxes, scores, classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})
            # Visualization of the results of a detection.
            vis_util.visualize_boxes_and_labels_on_image_array(
                image_np, np.squeeze(boxes),
                np.squeeze(classes).astype(np.int32),
                np.squeeze(scores),
                category_index,
                use_normalized_coordinates=True,
                line_thickness=6)
            end = time.clock()

            print 'One frame detect take time:' ,end - start

            cv2.imshow("capture", image_np)
            print('after cv2 show')
            cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()

保存為 test.py,到目錄models-master/research/object_detection/models下。

8、運行:

進入models-master/research/object_detection/models運行命令:

sudo chmod 666 /dev/video0
python detect.py

9、測試結果:可以看到SSD模型加載花了3秒左右,識別一張圖在2秒左右。

安裝環境是會出現pip安裝超超時等等問題,解決辦法:sudo pip install --index-url https://pypi.douban.com/simple matplotlib

                                                                                       sudo apt-get install protobuf-compiler

安裝opencv時 sudo apt-get upgrade  sudo apt-get install python2.7-dev   sudo apt-get install python-opencv

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM