import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 超參數設置 # Hyper Parameters BATCH_SIZE = 64 LR_G = 0.0001 # learning rate for generator LR_D = 0.0001 # learning rate for discriminator N_IDEAS = 5 # think of this as number of ideas for generating an art work (Generator) ART_COMPONENTS = 15 # it could be total point G can draw in the canvas PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)]) # show our beautiful painting range # plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound') # plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound') # plt.legend(loc='upper right') # plt.show() # 著名畫家的畫 # 這里生成一些著名畫家的畫 (batch 條不同的一元二次方程曲線). def artist_works(): # painting from the famous artist (real target) a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis] paintings = a * np.power(PAINT_POINTS, 2) + (a-1) paintings = torch.from_numpy(paintings).float() return paintings # 神經網絡 # Generator (新手畫家), G 會拿着自己的一些靈感當做輸入, 輸出一元二次曲線上的點 (G 的畫). G = nn.Sequential( # Generator nn.Linear(N_IDEAS, 128), # random ideas (could from normal distribution) nn.ReLU(), nn.Linear(128, ART_COMPONENTS), # making a painting from these random ideas ) # Discriminator(新手鑒賞家). D 會接收一幅畫作 (一元二次曲線), 輸出這幅畫作到底是不是著名畫家的畫(是著名畫家的畫的概率). D = nn.Sequential( # Discriminator nn.Linear(ART_COMPONENTS, 128), # receive art work either from the famous artist or a newbie like G nn.ReLU(), nn.Linear(128, 1), nn.Sigmoid(), # tell the probability that the art work is made by artist ) # 搭建完神經網絡后,對 神經網路參數(net.parameters()) 進行優化 # 選擇優化器 optimizer 是訓練的工具 opt_D = torch.optim.Adam(D.parameters(), lr=LR_D) opt_G = torch.optim.Adam(G.parameters(), lr=LR_G) plt.ion() # something about continuous plotting # 訓練 # G 首先會有些靈感, G_ideas 就會拿到這些隨機靈感 (可以是正態分布的隨機數), # 然后 G 會根據這些靈感畫畫.接着我們拿着著名畫家的畫和 G 的畫, 讓 D 來判定這兩批畫作是著名畫家畫的概率. # 然后計算有多少來之畫家的畫猜對了, 有多少來自 G 的畫猜對了, 我們想最大化這些猜對的次數.這也就是 log(D(x)) + log(1-D(G(z)) # 因為 torch 中提升參數的形式是最小化誤差, 那我們把最大化 score 轉換成最小化 loss, # 在兩個 score 的合的地方加一個符號就好. 而 G 的提升就是要減小 D 猜測 G 生成數據的正確率, 也就是減小 D_score1. for step in range(10000): artist_paintings = artist_works() # real painting from artist G_ideas = torch.randn(BATCH_SIZE, N_IDEAS) # random ideas G_paintings = G(G_ideas) # fake painting from G (random ideas) prob_artist0 = D(artist_paintings) # D try to increase this prob prob_artist1 = D(G_paintings) # D try to reduce this prob D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1)) G_loss = torch.mean(torch.log(1. - prob_artist1)) opt_D.zero_grad() D_loss.backward(retain_graph=True) # reusing computational graph 保留參數 opt_D.step() opt_G.zero_grad() G_loss.backward() opt_G.step() if step % 50 == 0: # plotting plt.cla() plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting',) plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound') plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound') plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size': 13}) plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13}) plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.draw();plt.pause(0.01) plt.ioff() plt.show()