pytorch1.0實現GAN


import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt


# 超參數設置
# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001           # learning rate for generator
LR_D = 0.0001           # learning rate for discriminator
N_IDEAS = 5             # think of this as number of ideas for generating an art work (Generator)
ART_COMPONENTS = 15     # it could be total point G can draw in the canvas
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])

# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()

# 著名畫家的畫
# 這里生成一些著名畫家的畫 (batch 條不同的一元二次方程曲線).

def artist_works():     # painting from the famous artist (real target)
    a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
    paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
    paintings = torch.from_numpy(paintings).float()
    return paintings

# 神經網絡
# Generator (新手畫家), G 會拿着自己的一些靈感當做輸入, 輸出一元二次曲線上的點 (G 的畫).
G = nn.Sequential(                      # Generator
    nn.Linear(N_IDEAS, 128),            # random ideas (could from normal distribution)
    nn.ReLU(),
    nn.Linear(128, ART_COMPONENTS),     # making a painting from these random ideas
)
# Discriminator(新手鑒賞家). D 會接收一幅畫作 (一元二次曲線), 輸出這幅畫作到底是不是著名畫家的畫(是著名畫家的畫的概率).
D = nn.Sequential(                      # Discriminator
    nn.Linear(ART_COMPONENTS, 128),     # receive art work either from the famous artist or a newbie like G
    nn.ReLU(),
    nn.Linear(128, 1),
    nn.Sigmoid(),                       # tell the probability that the art work is made by artist
)

# 搭建完神經網絡后,對 神經網路參數(net.parameters()) 進行優化
# 選擇優化器 optimizer 是訓練的工具
opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)

plt.ion()   # something about continuous plotting

# 訓練
# G 首先會有些靈感, G_ideas 就會拿到這些隨機靈感 (可以是正態分布的隨機數),
# 然后 G 會根據這些靈感畫畫.接着我們拿着著名畫家的畫和 G 的畫, 讓 D 來判定這兩批畫作是著名畫家畫的概率.
# 然后計算有多少來之畫家的畫猜對了, 有多少來自 G 的畫猜對了, 我們想最大化這些猜對的次數.這也就是 log(D(x)) + log(1-D(G(z))
# 因為 torch 中提升參數的形式是最小化誤差, 那我們把最大化 score 轉換成最小化 loss,
# 在兩個 score 的合的地方加一個符號就好. 而 G 的提升就是要減小 D 猜測 G 生成數據的正確率, 也就是減小 D_score1.
for step in range(10000):
    artist_paintings = artist_works()           # real painting from artist
    G_ideas = torch.randn(BATCH_SIZE, N_IDEAS)  # random ideas
    G_paintings = G(G_ideas)                    # fake painting from G (random ideas)

    prob_artist0 = D(artist_paintings)          # D try to increase this prob
    prob_artist1 = D(G_paintings)               # D try to reduce this prob

    D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
    G_loss = torch.mean(torch.log(1. - prob_artist1))

    opt_D.zero_grad()
    D_loss.backward(retain_graph=True)      # reusing computational graph  保留參數
    opt_D.step()

    opt_G.zero_grad()
    G_loss.backward()
    opt_G.step()

    if step % 50 == 0:  # plotting
        plt.cla()
        plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting',)
        plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
        plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
        plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size': 13})
        plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
        plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.draw();plt.pause(0.01)

plt.ioff()
plt.show()

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM