原文:https://www.cnblogs.com/denny402/p/7520063.html
原文:https://www.jianshu.com/p/84f72791806f
原文:https://blog.csdn.net/lee813/article/details/89609691
1、下載fashion-mnist數據集
地址:https://github.com/zalandoresearch/fashion-mnist
下面這四個都要下載,下載完成后,解壓到同一個目錄,我是解壓到“E:/fashion_mnist/”這個目錄里面,好和下面的代碼目錄一致
2、在Geany中執行下面這段代碼。
這段代碼里面,需要先用pip安裝skimage、torch、torchvision,前兩篇文章有安裝步驟。
這段代碼的作用:將下載下來的 二進制文件 轉換為 圖片,會在目錄中生成兩個文件夾和兩個文本。
文件夾里面全是圖片,圖片的內容是數字,N多數字。
文本的內容主要是圖片和真實數字的一個關聯。

import os from skimage import io import torchvision.datasets.mnist as mnist root="E:/fashion_mnist/" train_set = ( mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')), mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte')) ) test_set = ( mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')), mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte')) ) print("training set :",train_set[0].size()) print("test set :",test_set[0].size()) def convert_to_img(train=True): if(train): f=open(root+'train.txt','w') data_path=root+'/train/' if(not os.path.exists(data_path)): os.makedirs(data_path) for i, (img,label) in enumerate(zip(train_set[0],train_set[1])): img_path=data_path+str(i)+'.jpg' io.imsave(img_path,img.numpy()) f.write(img_path+' '+str(label)+'\n') f.close() else: f = open(root + 'test.txt', 'w') data_path = root + '/test/' if (not os.path.exists(data_path)): os.makedirs(data_path) for i, (img,label) in enumerate(zip(test_set[0],test_set[1])): img_path = data_path+ str(i) + '.jpg' io.imsave(img_path, img.numpy()) f.write(img_path + ' ' + str(label) + '\n') f.close() convert_to_img(True) convert_to_img(False)
3、原文的這段代碼編譯會出錯,主要是跟下載的數據有關,數據格式不一樣,這里還在處理,原因是找到了的,就一個int的轉換,下面貼出改過后的代碼
出錯的地方:

import torch import re import numpy from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader from PIL import Image root="E:/fashion_mnist/" def default_loader(path): return Image.open(path).convert('RGB') class MyDataset(Dataset): def __init__(self, txt, transform=None, target_transform=None, loader=default_loader): fh = open(txt, 'r') imgs = [] for line in fh: line = line.strip('\n') line = line.rstrip() words = line.split() p1 = re.compile(r'[(](.*?)[)]', re.S) arr = re.findall(p1, words[1]) word = arr[0] imgs.append((words[0],int(word))) self.imgs = imgs self.transform = transform self.target_transform = target_transform self.loader = loader def __getitem__(self, index): fn, label = self.imgs[index] img = self.loader(fn) if self.transform is not None: img = self.transform(img) return img,label def __len__(self): return len(self.imgs) train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor()) test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor()) train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True) test_loader = DataLoader(dataset=test_data, batch_size=64)
3、原文的代碼,還有一部分也會報錯,ERROR如下。
唉,感嘆一下,下次還是看一下語法那些,能讀懂了代碼再改吧,本想怎個拿來主義的,結果拿來了還是不能運行
解決-原文地址:https://blog.csdn.net/weixin_43848267/article/details/88874584
解決:將 loss_return.data[0] 改為 loss_return.data
還有幾個地方 也要將 .data[0] 改為 .data
4、可完整運行的代碼
代碼1:

import os from skimage import io import torchvision.datasets.mnist as mnist root="E:/fashion_mnist/" train_set = ( mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')), mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte')) ) test_set = ( mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')), mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte')) ) print("training set :",train_set[0].size()) print("test set :",test_set[0].size()) def convert_to_img(train=True): if(train): f=open(root+'train.txt','w') data_path=root+'/train/' if(not os.path.exists(data_path)): os.makedirs(data_path) for i, (img,label) in enumerate(zip(train_set[0],train_set[1])): img_path=data_path+str(i)+'.jpg' io.imsave(img_path,img.numpy()) f.write(img_path+' '+str(label)+'\n') f.close() else: f = open(root + 'test.txt', 'w') data_path = root + '/test/' if (not os.path.exists(data_path)): os.makedirs(data_path) for i, (img,label) in enumerate(zip(test_set[0],test_set[1])): img_path = data_path+ str(i) + '.jpg' io.imsave(img_path, img.numpy()) f.write(img_path + ' ' + str(label) + '\n') f.close() convert_to_img(True) convert_to_img(False)
代碼2:

import re import numpy import torch from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader from PIL import Image root="E:/fashion_mnist/" # -----------------ready the dataset-------------------------- def default_loader(path): return Image.open(path).convert('RGB') class MyDataset(Dataset): def __init__(self, txt, transform=None, target_transform=None, loader=default_loader): fh = open(txt, 'r') imgs = [] for line in fh: line = line.strip('\n') line = line.rstrip() words = line.split() p1 = re.compile(r'[(](.*?)[)]', re.S) arr = re.findall(p1, words[1]) word = arr[0] imgs.append((words[0],int(word))) self.imgs = imgs self.transform = transform self.target_transform = target_transform self.loader = loader def __getitem__(self, index): fn, label = self.imgs[index] img = self.loader(fn) if self.transform is not None: img = self.transform(img) return img,label def __len__(self): return len(self.imgs) train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor()) test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor()) train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True) test_loader = DataLoader(dataset=test_data, batch_size=64) #-----------------create the Net and training------------------------ class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(3, 32, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2)) self.conv2 = torch.nn.Sequential( torch.nn.Conv2d(32, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.conv3 = torch.nn.Sequential( torch.nn.Conv2d(64, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.dense = torch.nn.Sequential( torch.nn.Linear(64 * 3 * 3, 128), torch.nn.ReLU(), torch.nn.Linear(128, 10) ) def forward(self, x): conv1_out = self.conv1(x) conv2_out = self.conv2(conv1_out) conv3_out = self.conv3(conv2_out) res = conv3_out.view(conv3_out.size(0), -1) out = self.dense(res) return out model = Net() print(model) optimizer = torch.optim.Adam(model.parameters()) loss_func = torch.nn.CrossEntropyLoss() for epoch in range(10): print('epoch {}'.format(epoch + 1)) # training----------------------------- train_loss = 0. train_acc = 0. for batch_x, batch_y in train_loader: batch_x, batch_y = Variable(batch_x), Variable(batch_y) out = model(batch_x) loss = loss_func(out, batch_y) train_loss += loss.item() pred = torch.max(out, 1)[1] train_correct = (pred == batch_y).sum() train_acc += train_correct.item() optimizer.zero_grad() loss.backward() optimizer.step() print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len( train_data)), train_acc / (len(train_data)))) # evaluation-------------------------------- model.eval() eval_loss = 0. eval_acc = 0. for batch_x, batch_y in test_loader: batch_x, batch_y = Variable(batch_x), Variable(batch_y) out = model(batch_x) loss = loss_func(out, batch_y) eval_loss += loss.item() pred = torch.max(out, 1)[1] num_correct = (pred == batch_y).sum() eval_acc += num_correct.item() print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( test_data)), eval_acc / (len(test_data))))
5、總結
提示:訓練模型有點耗時,這里注意一下
圖片如果過小,標簽頁里面單獨打開圖片會大些,排版搞得屁理解一下,一來沒時間寫文章,二來排版還沒學,以后空了就會學。還是先把文章的質量提高了來
出現的問題主要是因為 torch的版本不同造成的,所以一會我把 我這里的環境貼出來,避免發生同樣的錯誤。
6、環境
系統:win7 64位
Python 3.7.3
各個包的版本號,其它的好像就沒啥了
可測試代碼-版本2
代碼1:

#coding=utf-8 import os from skimage import io import torchvision.datasets.mnist as mnist root="E:/fashion_mnist/" train_set = ( mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')), mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte')) ) test_set = ( mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')), mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte')) ) print("training set :",train_set[0].size()) print("test set :",test_set[0].size()) def convert_to_img(train=True): if(train): f=open(root+'train.txt','w') data_path=root+'/train/' if(not os.path.exists(data_path)): os.makedirs(data_path) for i, (img,label) in enumerate(zip(train_set[0],train_set[1])): img_path=data_path+str(i)+'.jpg' io.imsave(img_path,img.numpy()) f.write(img_path+' '+str(label.numpy())+'\n') # label改為label.numpy() f.close() else: f = open(root + 'test.txt', 'w') data_path = root + '/test/' if (not os.path.exists(data_path)): os.makedirs(data_path) for i, (img,label) in enumerate(zip(test_set[0],test_set[1])): img_path = data_path+ str(i) + '.jpg' io.imsave(img_path, img.numpy()) f.write(img_path + ' ' + str(label.numpy()) + '\n') f.close() convert_to_img(True) convert_to_img(False)
代碼2:

import torch from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader from PIL import Image root="E:/fashion_mnist/" def default_loader(path): return Image.open(path).convert('RGB') class MyDataset(Dataset): def __init__(self, txt, transform=None, target_transform=None, loader=default_loader): fh = open(txt, 'r') imgs = [] for line in fh: line = line.strip('\n') line = line.rstrip() words = line.split() imgs.append((words[0],int(words[1]))) self.imgs = imgs self.transform = transform self.target_transform = target_transform self.loader = loader def __getitem__(self, index): fn, label = self.imgs[index] img = self.loader(fn) if self.transform is not None: img = self.transform(img) return img,label def __len__(self): return len(self.imgs) train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor()) test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor()) train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True) test_loader = DataLoader(dataset=test_data, batch_size=64) #-----------------create the Net and training------------------------ class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(3, 32, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2)) self.conv2 = torch.nn.Sequential( torch.nn.Conv2d(32, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.conv3 = torch.nn.Sequential( torch.nn.Conv2d(64, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.dense = torch.nn.Sequential( torch.nn.Linear(64 * 3 * 3, 128), torch.nn.ReLU(), torch.nn.Linear(128, 10) ) def forward(self, x): conv1_out = self.conv1(x) conv2_out = self.conv2(conv1_out) conv3_out = self.conv3(conv2_out) res = conv3_out.view(conv3_out.size(0), -1) out = self.dense(res) return out model = Net() print(model) optimizer = torch.optim.Adam(model.parameters()) loss_func = torch.nn.CrossEntropyLoss() for epoch in range(10): print('epoch {}'.format(epoch + 1)) # training----------------------------- train_loss = 0. train_acc = 0. for batch_x, batch_y in train_loader: batch_x, batch_y = Variable(batch_x), Variable(batch_y) out = model(batch_x) loss = loss_func(out, batch_y) train_loss += loss.data pred = torch.max(out, 1)[1] train_correct = (pred == batch_y).sum() train_acc += train_correct.data optimizer.zero_grad() loss.backward() optimizer.step() print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len( train_data)), train_acc / (len(train_data)))) # evaluation-------------------------------- model.eval() eval_loss = 0. eval_acc = 0. for batch_x, batch_y in test_loader: batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True) out = model(batch_x) loss = loss_func(out, batch_y) eval_loss += loss.data pred = torch.max(out, 1)[1] num_correct = (pred == batch_y).sum() eval_acc += num_correct.data print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( test_data)), eval_acc / (len(test_data))))
版本2修改的地方
原文:https://blog.csdn.net/shang_jia/article/details/82936074
原文:https://www.liangzl.com/get-article-detail-8524.html
注意:下面的代碼不管,下面是第一次測試的時候,下載錯了數據集
問題:這里的數據集是數字,不是這個數據集,代碼里面是用的fashion-mnist這個數據集
1、下載mnist數據集
地址:http://yann.lecun.com/exdb/mnist/
下面這四個都要下載,下載完成后,解壓到同一個目錄,我是解壓到“E:/fashion_mnist/”這個目錄里面,好和下面的代碼目錄一致
解壓完成后,需要修改一下文件名,如(修改原因:保持和下面代碼一樣,避免出現其它問題):
修改前:t10k-images.idx3-ubyte
修改后:t10k-images-idx3-ubyte
我是第一次弄這玩意,所以盡量弄得白痴些,走彎路很煩,有時候一點點小問題就弄半天,其實就是別人有那么一點沒講清楚,然后就會搞很久