Python 10 訓練模型


原文:https://www.cnblogs.com/denny402/p/7520063.html

原文:https://www.jianshu.com/p/84f72791806f

原文:https://blog.csdn.net/lee813/article/details/89609691

 

 

1、下載fashion-mnist數據集

  地址:https://github.com/zalandoresearch/fashion-mnist

  下面這四個都要下載,下載完成后,解壓到同一個目錄,我是解壓到“E:/fashion_mnist/”這個目錄里面,好和下面的代碼目錄一致

 

 

 

2、在Geany中執行下面這段代碼。

  這段代碼里面,需要先用pip安裝skimage、torch、torchvision,前兩篇文章有安裝步驟。

  這段代碼的作用:將下載下來的 二進制文件 轉換為 圖片,會在目錄中生成兩個文件夾和兩個文本。

          文件夾里面全是圖片,圖片的內容是數字,N多數字。

          文本的內容主要是圖片和真實數字的一個關聯。

 

import os
from skimage import io
import torchvision.datasets.mnist as mnist

root="E:/fashion_mnist/"
train_set = (
    mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
        )
test_set = (
    mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
        )
print("training set :",train_set[0].size())
print("test set :",test_set[0].size())

def convert_to_img(train=True):
    if(train):
        f=open(root+'train.txt','w')
        data_path=root+'/train/'
        if(not os.path.exists(data_path)):
            os.makedirs(data_path)
        for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
            img_path=data_path+str(i)+'.jpg'
            io.imsave(img_path,img.numpy())
            f.write(img_path+' '+str(label)+'\n')
        f.close()
    else:
        f = open(root + 'test.txt', 'w')
        data_path = root + '/test/'
        if (not os.path.exists(data_path)):
            os.makedirs(data_path)
        for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
            img_path = data_path+ str(i) + '.jpg'
            io.imsave(img_path, img.numpy())
            f.write(img_path + ' ' + str(label) + '\n')
        f.close()

convert_to_img(True)
convert_to_img(False)
View Code

 

 

 

3、原文的這段代碼編譯會出錯,主要是跟下載的數據有關,數據格式不一樣,這里還在處理,原因是找到了的,就一個int的轉換,下面貼出改過后的代碼

 出錯的地方:

 

import torch
import re
import numpy
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/"


def default_loader(path):
    return Image.open(path).convert('RGB')
class MyDataset(Dataset):
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
        fh = open(txt, 'r')
        imgs = []
        for line in fh:
            line = line.strip('\n')
            line = line.rstrip()
            words = line.split()
            p1 = re.compile(r'[(](.*?)[)]', re.S)
            arr = re.findall(p1, words[1])
            word = arr[0]
            imgs.append((words[0],int(word)))
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        fn, label = self.imgs[index]
        img = self.loader(fn)
        if self.transform is not None:
            img = self.transform(img)
        return img,label

    def __len__(self):
        return len(self.imgs)

train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)
View Code

 

 

 3、原文的代碼,還有一部分也會報錯,ERROR如下。

  唉,感嘆一下,下次還是看一下語法那些,能讀懂了代碼再改吧,本想怎個拿來主義的,結果拿來了還是不能運行

 

  解決-原文地址:https://blog.csdn.net/weixin_43848267/article/details/88874584

  解決:將 loss_return.data[0] 改為 loss_return.data

      還有幾個地方 也要將 .data[0] 改為 .data

 

 

4、可完整運行的代碼

代碼1:

import os
from skimage import io
import torchvision.datasets.mnist as mnist

root="E:/fashion_mnist/"
train_set = (
    mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
        )
test_set = (
    mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
        )
print("training set :",train_set[0].size())
print("test set :",test_set[0].size())

def convert_to_img(train=True):
    if(train):
        f=open(root+'train.txt','w')
        data_path=root+'/train/'
        if(not os.path.exists(data_path)):
            os.makedirs(data_path)
        for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
            img_path=data_path+str(i)+'.jpg'
            io.imsave(img_path,img.numpy())
            f.write(img_path+' '+str(label)+'\n')
        f.close()
    else:
        f = open(root + 'test.txt', 'w')
        data_path = root + '/test/'
        if (not os.path.exists(data_path)):
            os.makedirs(data_path)
        for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
            img_path = data_path+ str(i) + '.jpg'
            io.imsave(img_path, img.numpy())
            f.write(img_path + ' ' + str(label) + '\n')
        f.close()

convert_to_img(True)
convert_to_img(False)
View Code

 

代碼2:

 

import re
import numpy
import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/"

# -----------------ready the dataset--------------------------
def default_loader(path):
    return Image.open(path).convert('RGB')
class MyDataset(Dataset):
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
        fh = open(txt, 'r')
        imgs = []
        for line in fh:
            line = line.strip('\n')
            line = line.rstrip()
            words = line.split()
            
            p1 = re.compile(r'[(](.*?)[)]', re.S) 
            arr = re.findall(p1, words[1])
            word = arr[0]
            
            imgs.append((words[0],int(word)))
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        fn, label = self.imgs[index]
        img = self.loader(fn)
        if self.transform is not None:
            img = self.transform(img)
        return img,label

    def __len__(self):
        return len(self.imgs)

train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)


#-----------------create the Net and training------------------------

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Sequential(
            torch.nn.Conv2d(3, 32, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2))
        self.conv2 = torch.nn.Sequential(
            torch.nn.Conv2d(32, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.conv3 = torch.nn.Sequential(
            torch.nn.Conv2d(64, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.dense = torch.nn.Sequential(
            torch.nn.Linear(64 * 3 * 3, 128),
            torch.nn.ReLU(),
            torch.nn.Linear(128, 10)
        )

    def forward(self, x):
        conv1_out = self.conv1(x)
        conv2_out = self.conv2(conv1_out)
        conv3_out = self.conv3(conv2_out)
        res = conv3_out.view(conv3_out.size(0), -1)
        out = self.dense(res)
        return out


model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(10):
    print('epoch {}'.format(epoch + 1))
    # training-----------------------------
    train_loss = 0.
    train_acc = 0.
    for batch_x, batch_y in train_loader:
        batch_x, batch_y = Variable(batch_x), Variable(batch_y)
        out = model(batch_x)
        loss = loss_func(out, batch_y)
        train_loss += loss.item()
        pred = torch.max(out, 1)[1]
        train_correct = (pred == batch_y).sum()
        train_acc += train_correct.item()
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
        train_data)), train_acc / (len(train_data))))

    # evaluation--------------------------------
    model.eval()
    eval_loss = 0.
    eval_acc = 0.
    for batch_x, batch_y in test_loader:
        batch_x, batch_y = Variable(batch_x), Variable(batch_y)
        out = model(batch_x)
        loss = loss_func(out, batch_y)
        eval_loss += loss.item()
        pred = torch.max(out, 1)[1]
        num_correct = (pred == batch_y).sum()
        eval_acc += num_correct.item()
    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
        test_data)), eval_acc / (len(test_data))))
View Code

 

 

 

 

 

 5、總結

  提示:訓練模型有點耗時,這里注意一下

    圖片如果過小,標簽頁里面單獨打開圖片會大些,排版搞得屁理解一下,一來沒時間寫文章,二來排版還沒學,以后空了就會學。還是先把文章的質量提高了來

  出現的問題主要是因為 torch的版本不同造成的,所以一會我把 我這里的環境貼出來,避免發生同樣的錯誤。

 

 

6、環境

  系統:win7 64位

  Python 3.7.3

  各個包的版本號,其它的好像就沒啥了

  

 

 

 

 

 

 

 

 

可測試代碼-版本2

 

代碼1:

#coding=utf-8

import os
from skimage import io
import torchvision.datasets.mnist as mnist

root="E:/fashion_mnist/"
train_set = (
    mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
        )
test_set = (
    mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
    mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
        )
print("training set :",train_set[0].size())
print("test set :",test_set[0].size())

def convert_to_img(train=True):
    if(train):
        f=open(root+'train.txt','w')
        data_path=root+'/train/'
        if(not os.path.exists(data_path)):
            os.makedirs(data_path)
        for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
            img_path=data_path+str(i)+'.jpg'            
            io.imsave(img_path,img.numpy())
            f.write(img_path+' '+str(label.numpy())+'\n') # label改為label.numpy()
        f.close()
    else:
        f = open(root + 'test.txt', 'w')
        data_path = root + '/test/'
        if (not os.path.exists(data_path)):
            os.makedirs(data_path)
        for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
            img_path = data_path+ str(i) + '.jpg'
            io.imsave(img_path, img.numpy())
            f.write(img_path + ' ' + str(label.numpy()) + '\n')
        f.close()

convert_to_img(True)
convert_to_img(False)
View Code

 

代碼2:

import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/"


def default_loader(path):
    return Image.open(path).convert('RGB')
class MyDataset(Dataset):
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
        fh = open(txt, 'r')
        imgs = []
        for line in fh:
            line = line.strip('\n')
            line = line.rstrip()
            words = line.split()            
            imgs.append((words[0],int(words[1])))
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        fn, label = self.imgs[index]
        img = self.loader(fn)
        if self.transform is not None:
            img = self.transform(img)
        return img,label

    def __len__(self):
        return len(self.imgs)

train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)





#-----------------create the Net and training------------------------

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Sequential(
            torch.nn.Conv2d(3, 32, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2))
        self.conv2 = torch.nn.Sequential(
            torch.nn.Conv2d(32, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.conv3 = torch.nn.Sequential(
            torch.nn.Conv2d(64, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.dense = torch.nn.Sequential(
            torch.nn.Linear(64 * 3 * 3, 128),
            torch.nn.ReLU(),
            torch.nn.Linear(128, 10)
        )

    def forward(self, x):
        conv1_out = self.conv1(x)
        conv2_out = self.conv2(conv1_out)
        conv3_out = self.conv3(conv2_out)
        res = conv3_out.view(conv3_out.size(0), -1)
        out = self.dense(res)
        return out


model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(10):
    print('epoch {}'.format(epoch + 1))
    # training-----------------------------
    train_loss = 0.
    train_acc = 0.
    for batch_x, batch_y in train_loader:
        batch_x, batch_y = Variable(batch_x), Variable(batch_y)
        out = model(batch_x)
        loss = loss_func(out, batch_y)        
        train_loss += loss.data
        pred = torch.max(out, 1)[1]
        train_correct = (pred == batch_y).sum()
        train_acc += train_correct.data
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
        train_data)), train_acc / (len(train_data))))

    # evaluation--------------------------------
    model.eval()
    eval_loss = 0.
    eval_acc = 0.
    for batch_x, batch_y in test_loader:
        batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
        out = model(batch_x)
        loss = loss_func(out, batch_y)
        eval_loss += loss.data
        pred = torch.max(out, 1)[1]
        num_correct = (pred == batch_y).sum()
        eval_acc += num_correct.data
    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
        test_data)), eval_acc / (len(test_data))))
View Code

 

 版本2修改的地方

原文:https://blog.csdn.net/shang_jia/article/details/82936074

原文:https://www.liangzl.com/get-article-detail-8524.html

 

 

 

 

 

 

 

注意:下面的代碼不管,下面是第一次測試的時候,下載錯了數據集


問題:這里的數據集是數字,不是這個數據集,代碼里面是用的fashion-mnist這個數據集

 

1、下載mnist數據集

  地址:http://yann.lecun.com/exdb/mnist/

  下面這四個都要下載,下載完成后,解壓到同一個目錄,我是解壓到“E:/fashion_mnist/”這個目錄里面,好和下面的代碼目錄一致

  解壓完成后,需要修改一下文件名,如(修改原因:保持和下面代碼一樣,避免出現其它問題):

    修改前:t10k-images.idx3-ubyte

    修改后:t10k-images-idx3-ubyte

  我是第一次弄這玩意,所以盡量弄得白痴些,走彎路很煩,有時候一點點小問題就弄半天,其實就是別人有那么一點沒講清楚,然后就會搞很久

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM