ElasticStack學習(九):深入ElasticSearch搜索之詞項、全文本、結構化搜索及相關性算分


一、基於詞項與全文的搜索

  1、詞項

    Term(詞項)是表達語意的最小單位,搜索和利用統計語言模型進行自然語言處理都需要處理Term。

    Term的使用說明:

    1)Term Level Query:Term Query、Range Query、Exists Query、Prefix Query、Wildcard Query;

    2)在ES中,對於Term查詢的輸入是不做分詞處理的,會將輸入作為一個整體,在倒排索引中查找准確的詞項,並且使用相關度算分公式為每個包含該詞項的文檔進行相關度算分;

    3)通過Constant Score將查詢轉換成一個Filtering,以避免處分,利用緩存,提高查詢性能;

  2、詞項查詢使用

    1)批量創建一個索引,並插入數據,查看該索引的mapping,會發現相應字段是text類型,同時有子字段keyword。

    2)現進行對name或stuId字段的查詢。

    3)通過上述對兩個字段不同查詢條件的,以及查詢方式的對比,我們可以總結如下:

      a)對於字段類型為text的字段,其會按照默認analyzer進行分詞,如下圖所示:STU-001被分詞為兩個stu和001,所以當查詢stu-001或者STU-001是,是無法被索引到相當的文檔上去的;

      同理,也就是為什么查詢name時,用john可以查詢到,用John就無法查詢到的原因。因為默認analyzer:standard會將字段name中的大寫字母轉化為小寫,而當以Term方式查詢John,Term因為不做分詞處理(原樣查詢),也就無法查詢到能夠匹配John的信息。而用john查詢正好可以查詢到相應的文檔。

      b)基於此種情況下,用stuId.keyword或者name.keyword,進行原樣查詢信息查詢時,就可以查詢到相應的文檔。 這是因為相應字段中的子字段keyword是不做分詞處理的,所以如果要查詢字段中原始內容一樣的信息時,要加上column.keyword。

    4)詞項算分使用

    通過上圖中的查詢結果可以看到,相應結果有一個指標_score,這是相應查詢文檔的算分。

    如果在查詢中,希望跳過算分的過程,忽略TF-IDF(TF【詞頻】:Term Frequency;IDF【逆文本頻率指數】:Inverse Document Frequency)的計算,以避免相關性算分而引發的性能開銷,可以使用constant_score轉化為Filter,取消算分的環節。同時Filter可以有效利用緩存,以提升性能。

  

    從上圖查詢結果可以得到,_score分數為1.0。

  3、全文本查詢

  全文本查詢的說明:

    1)基於全文本查詢有:Match Query、Match Phrase Query、Query String Query;

    2)索引與搜索時都會進行分詞,查詢字符串會先傳遞給一個合適的分詞器,然后生成一個供查詢的詞項列表;

    3)查詢時,會對輸入的查詢進行分詞,然后每個詞項逐個進行查詢,同時為每個文檔生成一個算分,最終將結果進行合並。例如對STU-001進行查詢,若采用默認analyzer,會對相應字段進行stu或001的查詢;

    4)如果想對某個字段做精准查詢,不想做分詞處理,可以在mapping當中,將相應字段由text類型定義成keyword類型;

  

   4、全文本查詢使用

  

  

  

  

、結構化搜索

  結構化數據:日期、數值、布爾都是結構化數據,對於一些文本也是可以為結構化的,比如:對於商品的唯一標識符、商品的標簽標注、顏色集合等。

  結構化搜索:就是指對結構化數據的搜索。

  1、對於結構化數據的說明:

    1)對於結構化數據可以進行邏輯操作,比如區間范圍的查詢、數據大小的比對;

    2)結構化的文本可以做精確匹配(Term查詢)或部分匹配(Prefix前綴查詢);

      注意:對於Term的模糊查詢,建議謹慎使用,有時性能不夠好。

    3)結構化結果只有“是”或“否”兩個值,根據場景需要,可以決定對結構化搜索是否要打分; 

  2、結構化搜索使用

    1)布爾值查詢

    

    2)數值范圍查詢

    

    3)日期范圍查詢

      日期符號代表的意思:

      y--年;M--月;

      w--周;d--天;

      H/h--小時;m--分鍾;s--秒;      

    

    4)字段存在查詢

    

    

    5)字段多值查詢

    

    通過上圖中可以看到,在基於Term的多值查詢中,查詢某個字段的值,並不是完全的相等處理,而是一種包含關系。

    如果想做精確的匹配,需要在index的文檔中增加一個統計字段,結合布爾查詢,做出精確匹配,如下圖所示:

    

、相關性和相關性算分

  1、相關性:就是一個文檔與查詢語句匹配的程度;

    相關性算分:針對匹配程度,ES會對每個匹配查詢的結果進行打分,打分的本質就是排序,將把最符合用戶需求的文檔排在前面。

    在ES5.0之前,默認的相關性算分算法是TF-IDF,之后采用的是BM25算法。

  2、Term Frequency(TF:詞頻):就是指檢索詞在一篇文檔中出現的頻率,也就是檢索詞出現的次數除以文檔的總字數;

    度量一條查詢與結果文檔相關性的方法:將搜索中每一個詞的TF進行相加,如“ES的特點”,分完詞后進行的詞頻相加,TF(ES)+TF(的)+TF(特點);

    對於一些停用詞,如“的”在文檔中出現多次,但對於查詢相關度的貢獻並不是很大,所以不應該考慮這些詞的TF;

   3、Document Frequency(DF:文檔頻率):檢索詞在所有文檔中出現的頻率;

    Inverse Document Frequency(IDF:逆文檔頻率):通過公式:log(全部文檔數/檢索詞出現過的文檔總數)

     TF-IDF本質上是將TF的求和變成了加權求和:TF(ES)*IDF(ES)+TF(的)*IDF(的)+TF(特點)*IDF(特點)

   4、在Lucene中,TF-IDF的評分公式如下:

  5、ES5.0之后,算法從TF-IDF變為BM25,如下圖所示:

  

  TF-IDF當隨着TF無限增長時,那算分也不會不斷的增長。而BM25算法進行了優化,隨着TF的無限增長,算分會逐漸的趨於一個數值。

   6、相關性信息查看

  

  通過圖中可以看到,因為第二條記錄比第一條記錄的文檔內容短,而導致其tf較高,因此最后的算法也相對於第一條算分高一些,因此在搜索結果順序上,第二條排在上面。

  Boosting是控制相關度的一種手段,在索引和字段上都是可以設置的。

  Boost的含義:

    1)當boost>1時,打分的相關度相對性提升;

    2)當0<boost<1時,打分的權重相對性降低;

    3)當boost<0時,貢獻為負分;

 

  大家可關注我的公眾號 

    

  知識學習來源:阮一鳴:《Elasticsearch核心技術與實戰》   


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM