hdfs存儲與數據同步


 

兩個hadoop集群之間同步數據

實例為dws的 store_wt_d表

 

 

 

文件拷貝

hadoop distcp -update -skipcrccheck hdfs://10.8.31.14:8020/user/hive/warehouse/dws.db/store_wt_d/ hdfs://10.8.22.40:8020/user/hive/warehouse/dws.db/store_wt_d/

-skipcrccheck 跳過檢驗

 

找到源地址對應的文件的數據庫以及表的結構

use dws

show create table store_wt_d;

 

在新的集群上面創建對應的庫表

輔助剛剛那台語句 修改對應集群的存儲地址

 

CREATE EXTERNAL TABLE `store_wt_d`(

`entp_code` string COMMENT '????',

`stat_dt` string COMMENT '????',

`store_code` string COMMENT '????',

`sale_amt` double COMMENT '????',

`sale_qty` double COMMENT '????',

`cost_amt` double COMMENT '????',

`refund_amt` double COMMENT '????',

`refund_qty` double COMMENT '????',

`gp_amt` double COMMENT '???',

`store_gust_cnt` double COMMENT '?????',

`busi_store_cnt` double COMMENT '?????',

`order_item_sum` double COMMENT '?????',

`order_item_cnt` double COMMENT '?????',

`ol_sale_qty` double COMMENT '??????',

`ol_sale_amt` double COMMENT '??????',

`ol_gust_cnt` double COMMENT '?????',

`ol_gp_amt` double COMMENT '?????',

`mem_sale_qty` double COMMENT '??????',

`mem_sale_amt` double COMMENT '??????',

`mem_gust_cnt` double COMMENT '?????',

`mem_gp_amt` double COMMENT '?????',

`inventory_pro_amt` double COMMENT '????',

`inventory_pro_qty` double COMMENT '????',

`inventory_los_amt` double COMMENT '????',

`inventory_los_qty` double COMMENT '????',

`sh_amt` double COMMENT '????',

`sh_qty` double COMMENT '????',

`cploss_amt` double COMMENT '??????',

`cpsh_amt` double COMMENT '??????',

`gds_ord_qty` double COMMENT '????',

`gds_pre_ord_qty` double COMMENT '?????',

`gds_dvs_qty` double COMMENT '????',

`gds_send_qty` double COMMENT '????',

`gds_arv_qty` double COMMENT '????',

`gds_arv_amt` double COMMENT '????',

`gds_take_qty` double COMMENT '????',

`rtn_bk_ps_qty` double COMMENT '??????',

`gds_need_qty` double COMMENT '????',

`stk_amt` double COMMENT '????',

`stk_qty` double COMMENT '????',

`ini_stk_qty` double COMMENT '??????',

`ini_stk_amt` double COMMENT '??????',

`fnl_stk_qty` double COMMENT '??????',

`fnl_stk_amt` double COMMENT '??????',

`iwh_as_qty` double COMMENT '????????',

`iwh_as_amt` double COMMENT '????????',

`iwh_as_gp_amt` double COMMENT '?????????',

`gds_arv_iwh_qty` double COMMENT '??????',

`gds_arv_iwh_amt` double COMMENT '??????',

`gds_arv_iwh_gp_amt` double COMMENT '???????',

`transfer_iwh_qty` double COMMENT '??????',

`transfer_iwh_amt` double COMMENT '??????',

`transfer_iwh_gp_amt` double COMMENT '???????',

`iwh_io_qty` double COMMENT '??????',

`iwh_io_amt` double COMMENT '??????',

`iwh_io_gp_amt` double COMMENT '???????',

`iwh_tot_sum_qty` double COMMENT '???????',

`iwh_tot_sum_amt` double COMMENT '???????',

`iwh_tot_sum_gp_amt` double COMMENT '????????',

`owh_as_qty` double COMMENT '????????',

`owh_as_amt` double COMMENT '????????',

`owh_as_gp_amt` double COMMENT '?????????',

`stk_bs_qty` double COMMENT '??????',

`stk_bs_amt` double COMMENT '??????',

`stk_bs_gp_amt` double COMMENT '???????',

`owh_pos_qty` double COMMENT '??????',

`owh_pos_amt` double COMMENT '??????',

`owh_pos_gp_amt` double COMMENT '???????',

`owh_rs_qty` double COMMENT '????????',

`owh_rs_amt` double COMMENT '????????',

`owh_rs_gp_amt` double COMMENT '?????????',

`transfer_owh_qty` double COMMENT '??????',

`transfer_owh_amt` double COMMENT '??????',

`transfer_owh_gp_amt` double COMMENT '???????',

`owh_ly_qty` double COMMENT '??????',

`owh_ly_amt` double COMMENT '??????',

`owh_ly_gp_amt` double COMMENT '???????',

`owh_sc_qty` double COMMENT '??????',

`owh_sc_amt` double COMMENT '??????',

`owh_sc_gp_amt` double COMMENT '???????',

`owh_tot_sum_qty` double COMMENT '???????',

`owh_tot_sum_amt` double COMMENT '???????',

`owh_tot_sum_gp_amt` double COMMENT '????????',

`pk_qty` double COMMENT '????',

`pk_amt` double COMMENT '????',

`pk_gp_amt` double COMMENT '?????',

`pk_tot_sum_qty` double COMMENT '???????',

`pk_tot_sum_amt` double COMMENT '???????',

`pk_tot_sum_gp_amt` double COMMENT '????????',

`stk_item_cnt` double COMMENT '?????',

`unsold_gds_cnt` double COMMENT '?????',

`trgt_sale_amt` double COMMENT '??????',

`trgt_gust_cnt` double COMMENT '?????',

`trgt_gp_amt` double COMMENT '?????',

`synctime` string COMMENT '????')

PARTITIONED BY (

`part_date` string)

ROW FORMAT SERDE

'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'

WITH SERDEPROPERTIES (

'field.delim'='-128',

'line.delim'='\n',

'serialization.format'='-128')

STORED AS INPUTFORMAT

'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'

OUTPUTFORMAT

'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'

LOCATION

'hdfs://10.8.22.40:8020/user/hive/warehouse/dws.db/store_wt_d'

 

修復表

msck repair table store_wt_d;

 

查看表情況

 

 

正常

 

hive--hdfs存儲格式測試

 

hive默認的存儲格式是text

 

 

 

 

測試 如果一個parquet格式的hive表數據導入到一個text的表之后會有什么情況

 

創建外表,默認為text格式 但是導入的數據為parquet格式

 

 

查看數據發現是亂碼

 

另外如果數據的存儲格式是parquet 直接去hdfs上查看也會亂碼

 

 

如果是text格式存儲的

正常

 

 

 

不同格式的相同數據之間的存儲對比

 

上面為parquet壓縮的,后面的為沒有壓縮的(text格式的)

 

使用壓縮

CREATE TABLE `store_wt_d2` STORED AS PARQUET TBLPROPERTIES('parquet.compression'='SNAPPY') as select * from store_wt_d

再次查看 發現確實量小了不少

 

 

但是時間也明顯更長了

 

 

創建parquet table :

create table mytable(a int,b int) STORED AS PARQUET;

 

創建帶壓縮的parquet table:

create table mytable(a int,b int) STORED AS PARQUET TBLPROPERTIES('parquet.compression'='SNAPPY');

 

如果原來創建表的時候沒有指定壓縮,后續可以通過修改表屬性的方式添加壓縮:

ALTER TABLE mytable SET TBLPROPERTIES ('parquet.compression'='SNAPPY');

 

或者在寫入的時候set parquet.compression=SNAPPY;

不過只會影響后續入庫的數據,原來的數據不會被壓縮,需要重跑原來的數據。

采用壓縮之后大概可以降低1/3的存儲大小。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM