什么是阻塞隊列?
阻塞隊列是一個在隊列基礎上又支持了兩個附加操作的隊列。
2個附加操作:
支持阻塞的插入方法:隊列滿時,隊列會阻塞插入元素的線程,直到隊列不滿。
支持阻塞的移除方法:隊列空時,獲取元素的線程會等待隊列變為非空。
阻塞隊列的應用場景
阻塞隊列常用於生產者和消費者的場景,生產者是向隊列里添加元素的線程,消費者是從隊列里取元素的線程。簡而言之,阻塞隊列是生產者用來存放元素、消費者獲取元素的容器。
幾個方法
在阻塞隊列不可用的時候,上述2個附加操作提供了四種處理方法
方法\處理方式 | 拋出異常 | 返回特殊值 | 一直阻塞 | 超時退出 |
---|---|---|---|---|
插入方法 | add(e) | offer(e) | put(e) | offer(e,time,unit) |
移除方法 | remove() | poll() | take() | poll(time,unit) |
檢查方法 | element() | peek() | 不可用 | 不可用 |
JAVA里的阻塞隊列
JDK 7 提供了7個阻塞隊列,如下
1、ArrayBlockingQueue 數組結構組成的有界阻塞隊列。
此隊列按照先進先出(FIFO)的原則對元素進行排序,但是默認情況下不保證線程公平的訪問隊列,即如果隊列滿了,那么被阻塞在外面的線程對隊列訪問的順序是不能保證線程公平(即先阻塞,先插入)的。
2、LinkedBlockingQueue一個由鏈表結構組成的有界阻塞隊列
此隊列按照先出先進的原則對元素進行排序
3、PriorityBlockingQueue 支持優先級的無界阻塞隊列
4、DelayQueue 支持延時獲取元素的無界阻塞隊列,即可以指定多久才能從隊列中獲取當前元素
5、SynchronousQueue不存儲元素的阻塞隊列,每一個put必須等待一個take操作,否則不能繼續添加元素。並且他支持公平訪問隊列。
6、LinkedTransferQueue由鏈表結構組成的無界阻塞TransferQueue隊列。相對於其他阻塞隊列,多了tryTransfer和transfer方法
transfer方法
如果當前有消費者正在等待接收元素(take或者待時間限制的poll方法),transfer可以把生產者傳入的元素立刻傳給消費者。如果沒有消費者等待接收元素,則將元素放在隊列的tail節點,並等到該元素被消費者消費了才返回。
tryTransfer方法
用來試探生產者傳入的元素能否直接傳給消費者。,如果沒有消費者在等待,則返回false。和上述方法的區別是該方法無論消費者是否接收,方法立即返回。而transfer方法是必須等到消費者消費了才返回。
7、LinkedBlockingDeque鏈表結構的雙向阻塞隊列,優勢在於多線程入隊時,減少一半的競爭。
如何使用阻塞隊列來實現生產者-消費者模型?
通知模式實現:所謂通知模式,就是當生產者往滿的隊列里添加元素時會阻塞住生產者,當消費者消費了一個隊列中的元素后,會通知生產者當前隊列可用。
使用BlockingQueue解決生產者消費者問題
為什么BlockingQueue適合解決生產者消費者問題
任何有效的生產者-消費者問題解決方案都是通過控制生產者put()方法(生產資源)和消費者take()方法(消費資源)的調用來實現的,一旦你實現了對方法的阻塞控制,那么你將解決該問題。
Java通過BlockingQueue提供了開箱即用的支持來控制這些方法的調用(一個線程創建資源,另一個消費資源)。java.util.concurrent包下的BlockingQueue接口是一個線程安全的可用於存取對象的隊列。
BlockingQueue是一種數據結構,支持一個線程往里存資源,另一個線程從里取資源。這正是解決生產者消費者問題所需要的,那么讓我們開始解決該問題吧。
生產者
以下代碼用於生產者線程
package io.ymq.example.thread; import java.util.concurrent.BlockingQueue; /** * 描述:生產者 * * @author yanpenglei * @create 2018-03-14 15:52 **/ class Producer implements Runnable { protected BlockingQueue<Object> queue; Producer(BlockingQueue<Object> theQueue) { this.queue = theQueue; } public void run() { try { while (true) { Object justProduced = getResource(); queue.put(justProduced); System.out.println("生產者資源隊列大小= " + queue.size()); } } catch (InterruptedException ex) { System.out.println("生產者 中斷"); } } Object getResource() { try { Thread.sleep(100); } catch (InterruptedException ex) { System.out.println("生產者 讀 中斷"); } return new Object(); } }
消費者
以下代碼用於消費者線程
package io.ymq.example.thread; import java.util.concurrent.BlockingQueue; /** * 描述: 消費者 * * @author yanpenglei * @create 2018-03-14 15:54 **/ class Consumer implements Runnable { protected BlockingQueue<Object> queue; Consumer(BlockingQueue<Object> theQueue) { this.queue = theQueue; } public void run() { try { while (true) { Object obj = queue.take(); System.out.println("消費者 資源 隊列大小 " + queue.size()); take(obj); } } catch (InterruptedException ex) { System.out.println("消費者 中斷"); } } void take(Object obj) { try { Thread.sleep(100); // simulate time passing } catch (InterruptedException ex) { System.out.println("消費者 讀 中斷"); } System.out.println("消費對象 " + obj); } }
測試該解決方案是否運行正常
package io.ymq.example.thread; import java.util.concurrent.BlockingQueue; import java.util.concurrent.LinkedBlockingQueue; /** * 描述: 測試 * * @author yanpenglei * @create 2018-03-14 15:58 **/ public class ProducerConsumerExample { public static void main(String[] args) throws InterruptedException { int numProducers = 4; int numConsumers = 3; BlockingQueue<Object> myQueue = new LinkedBlockingQueue<Object>(5); for (int i = 0; i < numProducers; i++) { new Thread(new Producer(myQueue)).start(); } for (int i = 0; i < numConsumers; i++) { new Thread(new Consumer(myQueue)).start(); } Thread.sleep(1000); System.exit(0); } }
運行結果
生產者資源隊列大小= 1 生產者資源隊列大小= 1 消費者 資源 隊列大小 1 生產者資源隊列大小= 1 消費者 資源 隊列大小 1 消費者 資源 隊列大小 1 生產者資源隊列大小= 1 生產者資源隊列大小= 3 消費對象 java.lang.Object@1e1aa52b 生產者資源隊列大小= 2 生產者資源隊列大小= 5 消費對象 java.lang.Object@6e740a76 消費對象 java.lang.Object@697853f6 ...... 消費對象 java.lang.Object@41a10cbc 消費對象 java.lang.Object@4963c8d1 消費者 資源 隊列大小 5 生產者資源隊列大小= 5 生產者資源隊列大小= 5 消費者 資源 隊列大小 4 消費對象 java.lang.Object@3e49c35d 消費者 資源 隊列大小 4 生產者資源隊列大小= 5
從輸出結果中,我們可以發現隊列大小永遠不會超過5,消費者線程消費了生產者生產的資源。