一、初識索引
1.1 為什么要有索引?
一般的應用系統,讀寫比例在10:1左右,而且插入操作和一般的更新操作很少出現性能問題,在生產環境中,我們遇到最多的,也是最容易出問題的,還是一些復雜的查詢操作,因此對查詢語句的優化顯然是重中之重。說起加速查詢,就不得不提到索引了。
1.2 什么是索引?
索引在MySQL中也叫是一種“鍵”,是存儲引擎用於快速找到記錄的一種數據結構。索引對於良好的性能非常關鍵,尤其是當表中的數據量越來越大時,索引對於性能的影響愈發重要。
索引優化應該是對查詢性能優化最有效的手段了。索引能夠輕易將查詢性能提高好幾個數量級。
索引相當於字典的音序表,如果要查某個字,如果不使用音序表,則需要從幾百頁中逐頁去查。
1.3 你是否對索引存在誤解?
索引是應用程序設計和開發的一個重要方面。若索引太多,應用程序的性能可能會受到影響。而索引太少,對查詢性能又會產生影響,要找到一個平衡點,這對應用程序的性能至關重要。一些開發人員總是在事后才想起添加索引----我一直認為,這源於一種錯誤的開發模式。如果知道數據的使用,從一開始就應該在需要處添加索引。開發人員往往對數據庫的使用停留在應用的層面,比如編寫SQL語句、存儲過程之類,他們甚至可能不知道索引的存在,或認為事后讓相關DBA加上即可。DBA往往不夠了解業務的數據流,而添加索引需要通過監控大量的SQL語句進而從中找到問題,這個步驟所需的時間肯定是遠大於初始添加索引所需的時間,並且可能會遺漏一部分的索引。當然索引也並不是越多越好,我曾經遇到過這樣一個問題:某台MySQL服務器iostat顯示磁盤使用率一直處於100%,經過分析后發現是由於開發人員添加了太多的索引,在刪除一些不必要的索引之后,磁盤使用率馬上下降為20%。可見索引的添加也是非常有技術含量的。
二、索引的原理
2.1 索引原理
索引的目的在於提高查詢效率,與我們查閱圖書所用的目錄是一個道理:先定位到章,然后定位到該章下的一個小節,然后找到頁數。相似的例子還有:查字典,查火車車次,飛機航班等
本質都是:通過不斷地縮小想要獲取數據的范圍來篩選出最終想要的結果,同時把隨機的事件變成順序的事件,也就是說,有了這種索引機制,我們可以總是用同一種查找方式來鎖定數據。
數據庫也是一樣,但顯然要復雜的多,因為不僅面臨着等值查詢,還有范圍查詢(>、<、between、in)、模糊查詢(like)、並集查詢(or)等等。數據庫應該選擇怎么樣的方式來應對所有的問題呢?我們回想字典的例子,能不能把數據分成段,然后分段查詢呢?最簡單的如果1000條數據,1到100分成第一段,101到200分成第二段,201到300分成第三段......這樣查第250條數據,只要找第三段就可以了,一下子去除了90%的無效數據。但如果是1千萬的記錄呢,分成幾段比較好?稍有算法基礎的同學會想到搜索樹,其平均復雜度是lgN,具有不錯的查詢性能。但這里我們忽略了一個關鍵的問題,復雜度模型是基於每次相同的操作成本來考慮的。而數據庫實現比較復雜,一方面數據是保存在磁盤上的,另外一方面為了提高性能,每次又可以把部分數據讀入內存來計算,因為我們知道訪問磁盤的成本大概是訪問內存的十萬倍左右,所以簡單的搜索樹難以滿足復雜的應用場景。
2.2 磁盤IO與預讀
前面提到了訪問磁盤,那么這里先簡單介紹一下磁盤IO和預讀,磁盤讀取數據靠的是機械運動,每次讀取數據花費的時間可以分為尋道時間、旋轉延遲、傳輸時間三個部分,尋道時間指的是磁臂移動到指定磁道所需要的時間,主流磁盤一般在5ms以下;旋轉延遲就是我們經常聽說的磁盤轉速,比如一個磁盤7200轉,表示每分鍾能轉7200次,也就是說1秒鍾能轉120次,旋轉延遲就是1/120/2 = 4.17ms;傳輸時間指的是從磁盤讀出或將數據寫入磁盤的時間,一般在零點幾毫秒,相對於前兩個時間可以忽略不計。那么訪問一次磁盤的時間,即一次磁盤IO的時間約等於5+4.17 = 9ms左右,聽起來還挺不錯的,但要知道一台500 -MIPS(Million Instructions Per Second)的機器每秒可以執行5億條指令,因為指令依靠的是電的性質,換句話說執行一次IO的時間可以執行約450萬條指令,數據庫動輒十萬百萬乃至千萬級數據,每次9毫秒的時間,顯然是個災難。下圖是計算機硬件延遲的對比圖,供大家參考:
考慮到磁盤IO是非常高昂的操作,計算機操作系統做了一些優化,當一次IO時,不光把當前磁盤地址的數據,而是把相鄰的數據也都讀取到內存緩沖區內,因為局部預讀性原理告訴我們,當計算機訪問一個地址的數據的時候,與其相鄰的數據也會很快被訪問到。每一次IO讀取的數據我們稱之為一頁(page)。具體一頁有多大數據跟操作系統有關,一般為4k或8k,也就是我們讀取一頁內的數據時候,實際上才發生了一次IO,這個理論對於索引的數據結構設計非常有幫助。
三、索引的數據結構
MySQL索引的數據結構-B+樹介紹:https://www.cnblogs.com/nickchen121/p/11152523.html
四、MySQL索引管理
4.1 功能
- 索引的功能就是加速查找
- mysql中的primary key,unique,聯合唯一也都是索引,這些索引除了加速查找以外,還有約束的功能
4.2 MySQL常用的索引
-
普通索引INDEX:加速查找
-
唯一索引:
- 主鍵索引PRIMARY KEY:加速查找+約束(不為空、不能重復)
- 唯一索引UNIQUE:加速查找+約束(不能重復)
-
聯合索引:
- PRIMARY KEY(id,name):聯合主鍵索引
- UNIQUE(id,name):聯合唯一索引
- INDEX(id,name):聯合普通索引
4.3 各個索引應用場景
舉個例子來說,比如你在為某商場做一個會員卡的系統。
這個系統有一個會員表
有下列字段:
會員編號 INT
會員姓名 VARCHAR(10)
會員身份證號碼 VARCHAR(18)
會員電話 VARCHAR(10)
會員住址 VARCHAR(50)
會員備注信息 TEXT
那么這個 會員編號,作為主鍵,使用 PRIMARY
會員姓名 如果要建索引的話,那么就是普通的 INDEX
會員身份證號碼 如果要建索引的話,那么可以選擇 UNIQUE (唯一的,不允許重復)
# 除此之外還有全文索引,即FULLTEXT
會員備注信息 , 如果需要建索引的話,可以選擇全文搜索。
用於搜索很長一篇文章的時候,效果最好。
用在比較短的文本,如果就一兩行字的,普通的 INDEX 也可以。
但其實對於全文搜索,我們並不會使用MySQL自帶的該索引,而是會選擇第三方軟件如Sphinx,專門來做全文搜索。
# 其他的如空間索引SPATIAL,了解即可,幾乎不用
各個索引的應用場景
各個索引的應用場景
4.4 索引的兩大類型hash與btree
我們可以在創建上述索引的時候,為其指定索引類型,分兩類:
- hash類型的索引:查詢單條快,范圍查詢慢
- btree類型的索引:b+樹,層數越多,數據量指數級增長(我們就用它,因為innodb默認支持它)
不同的存儲引擎支持的索引類型也不一樣:
- InnoDB 支持事務,支持行級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
- MyISAM 不支持事務,支持表級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
- Memory 不支持事務,支持表級別鎖定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
- NDB 支持事務,支持行級別鎖定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
- Archive 不支持事務,支持表級別鎖定,不支持 B-tree、Hash、Full-text 等索引;
4.5 創建/刪除索引的語法
# 方法一:創建表時
CREATE TABLE 表名 (
字段名1 數據類型 [完整性約束條件…],
字段名2 數據類型 [完整性約束條件…],
[UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY
[索引名] (字段名[(長度)] [ASC |DESC])
);
# 方法二:CREATE在已存在的表上創建索引
CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名
ON 表名 (字段名[(長度)] [ASC |DESC]) ;
# 方法三:ALTER TABLE在已存在的表上創建索引
ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX
索引名 (字段名[(長度)] [ASC |DESC]) ;
# 刪除索引:DROP INDEX 索引名 ON 表名字;
4.6 示例
# 方式一
create table t1(
id int,
name char,
age int,
sex enum('male','female'),
unique key uni_id(id),
index ix_name(name) # index沒有key
);
create table t1(
id int,
name char,
age int,
sex enum('male','female'),
unique key uni_id(id),
index(name) # index沒有key
);
# 方式二
create index ix_age on t1(age);
# 方式三
alter table t1 add index ix_sex(sex);
alter table t1 add index(sex);
# 查看
mysql> show create table t1;
| t1 | CREATE TABLE `t1` (
`id` int(11) DEFAULT NULL,
`name` char(1) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`sex` enum('male','female') DEFAULT NULL,
UNIQUE KEY `uni_id` (`id`),
KEY `ix_name` (`name`),
KEY `ix_age` (`age`),
KEY `ix_sex` (`sex`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
五、測試索引
5.1 數據准備
# 1. 准備表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);
# 2. 創建存儲過程,實現批量插入記錄
delimiter $$ # 聲明存儲過程的結束符號為$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<3000000)do
insert into s1 values(i,'eva','female',concat('eva',i,'@oldboy'));
set i=i+1;
end while;
END$$ # $$結束
delimiter ; # 重新聲明分號為結束符號
# 3. 查看存儲過程
show create procedure auto_insert1\G
# 4. 調用存儲過程
call auto_insert1();
1、在沒有索引的前提下測試查詢速度
無索引:mysql根本就不知道到底是否存在id等於333333333的記錄,只能把數據表從頭到尾掃描一遍,此時有多少個磁盤塊就需要進行多少IO操作,所以查詢速度很慢
mysql> select * from s1 where id=333333333;
Empty set (0.33 sec)
2、在表中已經存在大量數據的前提下,為某個字段段建立索引,建立速度會很慢
3、在索引建立完畢后,以該字段為查詢條件時,查詢速度提升明顯
注意:
- mysql先去索引表里根據b+樹的搜索原理很快搜索到id等於333333333的記錄不存在,IO大大降低,因而速度明顯提升
- 我們可以去mysql的data目錄下找到該表,可以看到占用的硬盤空間多了
- 需要注意,如下圖
5.2 小結
- 一定是為搜索條件的字段創建索引,比如
select * from s1 where id = 333;
就需要為id加上索引 - 在表中已經有大量數據的情況下,建索引會很慢,且占用硬盤空間,建完后查詢速度加快,比如
create index idx on s1(id);
會掃描表中所有的數據,然后以id為數據項,創建索引結構,存放於硬盤的表中。建完以后,再查詢就會很快了。 - 需要注意的是:innodb表的索引會存放於s1.ibd文件中,而myisam表的索引則會有單獨的索引文件table1.MYI
MySAM索引文件和數據文件是分離的,索引文件僅保存數據記錄的地址。而在innodb中,表數據文件本身就是按照B+Tree(BTree即Balance True)組織的一個索引結構,這棵樹的葉節點data域保存了完整的數據記錄。這個索引的key是數據表的主鍵,因此innodb表數據文件本身就是主索引。
因為inndob的數據文件要按照主鍵聚集,所以innodb要求表必須要有主鍵(Myisam可以沒有),如果沒有顯式定義,則mysql系統會自動選擇一個可以唯一標識數據記錄的列作為主鍵,如果不存在這種列,則mysql會自動為innodb表生成一個隱含字段作為主鍵,這字段的長度為6個字節,類型為長整型.
六、正確使用索引
6.1 索引未命中
並不是說我們創建了索引就一定會加快查詢速度,若想利用索引達到預想的提高查詢速度的效果,我們在添加索引時,必須遵循以下問題:
1、范圍問題,或者說條件不明確,條件中出現這些符號或關鍵字:>、>=、<、<=、!= 、between...and...、like、大於號、小於號
不等於!=
between ...and...
like
2、盡量選擇區分度高的列作為索引,區分度的公式是count(distinct col)/count(*),表示字段不重復的比例,比例越大我們掃描的記錄數越少,唯一鍵的區分度是1,而一些狀態、性別字段可能在大數據面前區分度就是0,那可能有人會問,這個比例有什么經驗值嗎?使用場景不同,這個值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條記錄。
先把表中的索引都刪除,讓我們專心研究區分度的問題:
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | YES | MUL | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(5) | YES | | NULL | |
| email | varchar(50) | YES | MUL | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec)
mysql> drop index a on s1;
Query OK, 0 rows affected (0.20 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> drop index d on s1;
Query OK, 0 rows affected (0.18 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(5) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec)
分析原因:
我們編寫存儲過程為表s1批量添加記錄,name字段的值均為egon,也就是說name這個字段的區分度很低(gender字段也是一樣的,我們稍后再搭理它)
回憶b+樹的結構,查詢的速度與樹的高度成反比,要想將樹的高低控制的很低,需要保證:在某一層內數據項均是按照從左到右,從小到大的順序依次排開,即左1<左2<左3<...
而對於區分度低的字段,無法找到大小關系,因為值都是相等的,毫無疑問,還想要用b+樹存放這些等值的數據,只能增加樹的高度,字段的區分度越低,則樹的高度越高。極端的情況,索引字段的值都一樣,那么b+樹幾乎成了一根棍。本例中就是這種極端的情況,name字段所有的值均為'nick'
現在我們得出一個結論:為區分度低的字段建立索引,索引樹的高度會很高,然而這具體會帶來什么影響呢???
-
如果條件是name='xxxx',那么肯定是可以第一時間判斷出'xxxx'是不在索引樹中的(因為樹中所有的值均為'nick’),所以查詢速度很快
-
如果條件正好是name='nick',查詢時,我們永遠無法從樹的某個位置得到一個明確的范圍,只能往下找,往下找,往下找。。。這與全表掃描的IO次數沒有多大區別,所以速度很慢
3、索引列不能在條件中參與計算,保持列“干凈”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b+樹中存的都是數據表中的字段值,但進行檢索時,需要把所有元素都應用函數才能比較,顯然成本太大。所以語句應該寫成create_time = unix_timestamp(’2014-05-29’)
4、and/or
-
and與or的邏輯
- 條件1 and 條件2:所有條件都成立才算成立,但凡要有一個條件不成立則最終結果不成立
- 條件1 or 條件2:只要有一個條件成立則最終結果就成立
-
and的工作原理
- 條件:
a = 10 and b = 'xxx' and c > 3 and d =4
- 索引:制作聯合索引(d,a,b,c)
- 工作原理:對於連續多個and:mysql會按照聯合索引,從左到右的順序找一個區分度高的索引字段(這樣便可以快速鎖定很小的范圍),加速查詢,即按照d—>a->b->c的順序
- 條件:
-
or的工作原理
- 條件:a = 10 or b = 'xxx' or c > 3 or d =4
- 索引:制作聯合索引(d,a,b,c)
- 工作原理:對於連續多個or:mysql會按照條件的順序,從左到右依次判斷,即a->b->c->d
在左邊條件成立但是索引字段的區分度低的情況下(name與gender均屬於這種情況),會依次往右找到一個區分度高的索引字段,加速查詢。
經過分析,在條件為name='nick' and gender='male' and id>333 and email='xxx'的情況下,我們完全沒必要為前三個條件的字段加索引,因為只能用上email字段的索引,前三個字段的索引反而會降低我們的查詢效率
5、最左前綴匹配原則,非常重要的原則,對於組合索引mysql會一直向右匹配直到遇到范圍查詢(>、<、between、like)就停止匹配(指的是范圍大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調整。
6、其他情況
- 使用函數
select * from tb1 where reverse(email) = 'nick';
- 類型不一致
如果列是字符串類型,傳入條件是必須用引號引起來,不然...
select * from tb1 where email = 999;
#排序條件為索引,則select字段必須也是索引字段,否則無法命中
- order by
select name from s1 order by email desc;
當根據索引排序時候,select查詢的字段如果不是索引,則速度仍然很慢
select email from s1 order by email desc;
特別的:如果對主鍵排序,則還是速度很快:
select * from tb1 order by nid desc;
- 組合索引最左前綴
如果組合索引為:(name,email)
name and email -- 命中索引
name -- 命中索引
email -- 未命中索引
- count(1)或count(列)代替count(*)在mysql中沒有差別了
- create index xxxx on tb(title(19)) #text類型,必須制定長度
6.2 其他注意事項
- 避免使用select *
- 使用count(*)
- 創建表時盡量使用 char 代替 varchar
- 表的字段順序固定長度的字段優先
- 組合索引代替多個單列索引(由於mysql中每次只能使用一個索引,所以經常使用多個條件查詢時更適合使用組合索引)
- 盡量使用短索引
- 使用連接(JOIN)來代替子查詢(Sub-Queries)
- 連表時注意條件類型需一致
- 索引散列值(重復少)不適合建索引,例:性別不適合
七、聯合索引和覆蓋索引
7.1 聯合索引
聯合索引是指對表上的多個列合起來做一個索引。聯合索引的創建方法與單個索引的創建方法一樣,不同之處僅在於有多個索引列,如下:
mysql> create table t(
-> a int,
-> b int,
-> primary key(a),
-> key idx_a_b(a,b)
-> );
Query OK, 0 rows affected (0.11 sec)
那么何時需要使用聯合索引呢?在討論這個問題之前,先來看一下聯合索引內部的結果。從本質上來說,聯合索引就是一棵B+樹,不同的是聯合索引的鍵值得數量不是1,而是>=2。接着來討論兩個整型列組成的聯合索引,假定兩個鍵值得名稱分別為a、b如圖:
可以看到這與我們之前看到的單個鍵的B+樹並沒有什么不同,鍵值都是排序的,通過葉子結點可以邏輯上順序地讀出所有數據,就上面的例子來說,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),數據按(a,b)的順序進行了存放。
因此,對於查詢select * from table where a=xxx and b=xxx, 顯然是可以使用(a,b) 這個聯合索引的,對於單個列a的查詢select * from table where a=xxx,也是可以使用(a,b)這個索引的。
但對於b列的查詢select * from table where b=xxx,則不可以使用(a,b) 索引,其實你不難發現原因,葉子節點上b的值為1、2、1、4、1、2顯然不是排序的,因此對於b列的查詢使用不到(a,b) 索引
聯合索引的第二個好處是在第一個鍵相同的情況下,已經對第二個鍵進行了排序處理,例如在很多情況下應用程序都需要查詢某個用戶的購物情況,並按照時間進行排序,最后取出最近三次的購買記錄,這時使用聯合索引可以幫我們避免多一次的排序操作,因為索引本身在葉子節點已經排序了,如下
# ===========准備表==============
create table buy_log(
userid int unsigned not null,
buy_date date
);
insert into buy_log values
(1,'2009-01-01'),
(2,'2009-01-01'),
(3,'2009-01-01'),
(1,'2009-02-01'),
(3,'2009-02-01'),
(1,'2009-03-01'),
(1,'2009-04-01');
alter table buy_log add key(userid);
alter table buy_log add key(userid,buy_date);
# ===========驗證==============
mysql> show create table buy_log;
| buy_log | CREATE TABLE `buy_log` (
`userid` int(10) unsigned NOT NULL,
`buy_date` date DEFAULT NULL,
KEY `userid` (`userid`),
KEY `userid_2` (`userid`,`buy_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
# 可以看到possible_keys在這里有兩個索引可以用,分別是單個索引userid與聯合索引userid_2,但是優化器最終選擇了使用的key是userid因為該索引的葉子節點包含單個鍵值,所以理論上一個頁能存放的記錄應該更多
mysql> explain select * from buy_log where userid=2;
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
| 1 | SIMPLE | buy_log | ref | userid,userid_2 | userid | 4 | const | 1 | |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
row in set (0.00 sec)
# 接着假定要取出userid為1的最近3次的購買記錄,用的就是聯合索引userid_2了,因為在這個索引中,在userid=1的情況下,buy_date都已經排序好了
mysql> explain select * from buy_log where userid=1 order by buy_date desc limit 3;
+--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+
|id|select_type|table |type|possible_keys | key |key_len|ref |rows| Extra |
+--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+
| 1|SIMPLE |buy_log|ref |userid,userid_2|userid_2| 4 |const| 4 |Using where; Using index|
+--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+
row in set (0.00 sec)
# ps:如果extra的排序顯示是Using filesort,則意味着在查出數據后需要二次排序(如下查詢語句,沒有先用where userid=3先定位范圍,於是即便命中索引也沒用,需要二次排序)
mysql> explain select * from buy_log order by buy_date desc limit 3;
+--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+
|id|select_type| table |type |possible_keys|key |key_len|ref |rows|Extra |
+--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+
| 1|SIMPLE |buy_log|index| NULL |userid_2| 8 |NULL| 7 |Using index; Using filesort|
+--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+
# 對於聯合索引(a,b),下述語句可以直接使用該索引,無需二次排序
select ... from table where a=xxx order by b;
# 然后對於聯合索引(a,b,c)來首,下列語句同樣可以直接通過索引得到結果
select ... from table where a=xxx order by b;
select ... from table where a=xxx and b=xxx order by c;
# 但是對於聯合索引(a,b,c),下列語句不能通過索引直接得到結果,還需要自己執行一次filesort操作,因為索引(a,c)並未排序
select ... from table where a=xxx order by c;
7.2 覆蓋索引
InnoDB存儲引擎支持覆蓋索引(covering index,或稱索引覆蓋),即從輔助索引中就可以得到查詢記錄,而不需要查詢聚集索引中的記錄。
使用覆蓋索引的一個好處是:輔助索引不包含整行記錄的所有信息,故其大小要遠小於聚集索引,因此可以減少大量的IO操作。
注意:覆蓋索引技術最早是在InnoDB Plugin中完成並實現,這意味着對於InnoDB版本小於1.0的,或者MySQL數據庫版本為5.0以下的,InnoDB存儲引擎不支持覆蓋索引特性。
對於InnoDB存儲引擎的輔助索引而言,由於其包含了主鍵信息,因此其葉子節點存放的數據為(primary key1,priamey key2,...,key1,key2,...)。例如:
select age from s1 where id=123 and name = 'nick'; #id字段有索引,但是name字段沒有索引,該sql命中了索引,但未覆蓋,需要去聚集索引中再查找詳細信息。
最牛逼的情況是,索引字段覆蓋了所有,那全程通過索引來加速查詢以及獲取結果就ok了
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.21 sec)
mysql> explain select name from s1 where id=1000; #沒有任何索引
+--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+
|id|select_type|table|partitions|type|possible_keys|key |key_len|ref | rows |filtered| Extra |
+--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+
| 1| SIMPLE | s1 | NULL |ALL | NULL |NULL| NULL |NULL|2688336| 10.00 |Using where|
+--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+
row in set, 1 warning (0.00 sec)
mysql> create index idx_id on s1(id); #創建索引
Query OK, 0 rows affected (4.16 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> explain select name from s1 where id=1000; #命中輔助索引,但是未覆蓋索引,還需要從聚集索引中查找name
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+
|id|select_type|table|partitions|type|possible_keys| key|key_len| ref |rows|filtered|Extra|
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+
| 1| SIMPLE | s1 | NULL | ref| idx_id |idx_id| 4 |const| 1 | 100.00 | NULL|
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+
row in set, 1 warning (0.08 sec)
mysql> explain select id from s1 where id=1000; #在輔助索引中就找到了全部信息,Using index代表覆蓋索引
+--+-----------+-----+----------+----+-------------+------+-------+-------+------+----------+-----+
|id|select_type|table|partitions|type|possible_keys| key |key_len| ref |rows|filtered| Extra |
+--+-----------+-----+----------+----+--------------------+-------+-------+------+----------+-----+
| 1| SIMPLE | s1 | NULL | ref| idx_id |idx_id| 4 |const| 1 | 100.00 |Using index|
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----------+
row in set, 1 warning (0.03 sec)
覆蓋索引的另外一個好處是對某些統計問題而言的。基於上一小結創建的表buy_log,查詢計划如下:
mysql> explain select count(*) from buy_log;
+--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
|id|select_type|table | type|possible_keys|key |key_len|ref |rows|Extra |
+--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
| 1| SIMPLE |buy_log|index| NULL |userid| 4 |NULL| 7 |Using index|
+--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
row in set (0.00 sec)
innodb存儲引擎並不會選擇通過查詢聚集索引來進行統計。由於buy_log表有輔助索引,而輔助索引遠小於聚集索引,選擇輔助索引可以減少IO操作,故優化器的選擇如上key為userid輔助索引
對於(a,b)形式的聯合索引,一般是不可以選擇b中所謂的查詢條件。但如果是統計操作,並且是覆蓋索引,則優化器還是會選擇使用該索引,如下:
# 聯合索引userid_2(userid,buy_date),一般情況,我們按照buy_date是無法使用該索引的,但特殊情況下:查詢語句是統計操作,且是覆蓋索引,則按照buy_date當做查詢條件時,也可以使用該聯合索引
mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01';
+--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
|id|select_type| table |type |possible_keys| key |key_len|ref |rows|Extra |
+--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
| 1| SIMPLE |buy_log|index| NULL |userid_2| 8 |NULL| 7 |Using where; Using index|
+--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
row in set (0.00 sec)
7.3 合並索引
mysql> explain select count(email) from index_t where id = 1000000 or email='eva100000@oldboy';
+--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
| id | select_type| table | type | possible_keys | key | key_len | ref |rows | Extra |
+--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
| 1 | SIMPLE | index_t| index_merge | PRIMARY,email,ind_id,ind_email | PRIMARY,email | 4,51 |NULL| 2 |Using union(PRIMARY,email); Using where |
+--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
row in set (0.01 sec)
八、查詢優化神器-explain
MySQL性能分析之Explain:https://www.cnblogs.com/nickchen121/p/11155917.html
九、慢查詢優化的基本步驟
- 先運行看看是否真的很慢,注意設置SQL_NO_CACHE
- where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數最小的表開始查起,單表每個字段分別查詢,看哪個字段的區分度最高
- explain查看執行計划,是否與1預期一致(從鎖定記錄較少的表開始查詢)
- order by limit 形式的sql語句讓排序的表優先查
- 了解業務方使用場景
- 加索引時參照建索引的幾大原則
- 觀察結果,不符合預期繼續從0分析
十、慢日志管理
慢日志
- 執行時間 > 10
- 未命中索引
- 日志文件路徑
配置:
- 內存
show variables like '%query%';
show variables like '%queries%';
set global 變量名 = 值
- 配置文件
mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'
my.conf內容:
slow_query_log = ON
slow_query_log_file = D:/....
注意:修改配置文件之后,需要重啟服務
MySQL日志管理
========================================================
錯誤日志: 記錄 MySQL 服務器啟動、關閉及運行錯誤等信息
二進制日志: 又稱binlog日志,以二進制文件的方式記錄數據庫中除 SELECT 以外的操作
查詢日志: 記錄查詢的信息
慢查詢日志: 記錄執行時間超過指定時間的操作
中繼日志: 備庫將主庫的二進制日志復制到自己的中繼日志中,從而在本地進行重放
通用日志: 審計哪個賬號、在哪個時段、做了哪些事件
事務日志或稱redo日志: 記錄Innodb事務相關的如事務執行時間、檢查點等
========================================================
一、bin-log
1. 啟用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暫停
//僅當前會話
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看全部:
# mysqlbinlog mysql.000002
按時間:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54"
按字節數:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截斷bin-log(產生新的bin-log文件)
a. 重啟mysql服務器
b. # mysql -uroot -p123 -e 'flush logs'
5. 刪除bin-log文件
# mysql -uroot -p123 -e 'reset master'
二、查詢日志
啟用通用查詢日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart
三、慢查詢日志
啟用慢查詢日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3 單位為秒
查看慢查詢日志
測試:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);