1 """Python繪制語譜圖"""
2 """Python繪制時域波形"""
3
4 # 導入相應的包
5 import numpy, wave
6 import matplotlib.pyplot as plt
7 import numpy as np
8 import os
9
10 filepath = 'G:/實戰培訓/Python生成語譜圖/ReNoise/Prim10/' # 添加路徑
11 filename = os.listdir(filepath) # 得到文件夾下的所有文件名
12
13 for i in range(len(filename)):
14 f = wave.open(filepath + filename[i], 'rb') # 調用wave模塊中的open函數,打開語音文件。
15 params = f.getparams() # 得到語音參數
16 nchannels, sampwidth, framerate, nframes = params[:4] # nchannels:音頻通道數,sampwidth:每個音頻樣本的字節數,framerate:采樣率,nframes:音頻采樣點數
17 strData = f.readframes(nframes) # 讀取音頻,字符串格式
18 wavaData = np.fromstring(strData, dtype=np.int16) # 得到的數據是字符串,將字符串轉為int型
19 wavaData = wavaData * 1.0/max(abs(wavaData)) # wave幅值歸一化
20 wavaData = np.reshape(wavaData, [nframes, nchannels]).T # .T 表示轉置
21 f.close()
22
23 #(1)繪制語譜圖
24 plt.figure()
25 plt.specgram(wavaData[0], Fs=framerate, scale_by_freq=True, sides='default') # 繪制頻譜
26 plt.xlabel('Time(s)')
27 plt.ylabel('Frequency')
28 plt.title("Spectrogram_{}".format(i+1))
29 plt.savefig('G:/實戰培訓/Python生成語譜圖/語譜圖/{}.jpg'.format(filename[i][:-4]))
30 plt.show()
31
32 #(2)繪制時域波形
33 time = np.arange(0, nframes) * (1.0 / framerate)
34 time = np.reshape(time, [nframes, 1]).T
35 plt.plot(time[0, :nframes], wavaData[0, :nframes], c="b")
36 plt.xlabel("time(seconds)")
37 plt.ylabel("amplitude")
38 plt.title("Original wave")
39 plt.savefig('G:/實戰培訓/Python生成語譜圖/語譜圖/{}_.jpg'.format(filename[i][:-4])) # 保存繪制的圖形
40 plt.show()