Featuretools是一個可以自動進行特征工程的python庫,主要原理是針對多個數據表以及它們之間的關系,通過轉換(Transformation)和聚合(Aggregation)操作自動生成新的特征。轉換操作的對象是單一數據表的一列或多列(例如對某列取絕對值或者計算兩列之差);聚合操作的對象是具有父子 (one-to-many)關系的兩個數據表,通過對父表的某列進行歸類(groupby)計算子表某列對應的統計值。下面通過幾個簡單的例子進行介紹,Featuretools在實際應用中的案例可以參考它的Github倉庫。
1. 顧客交易記錄,每個交易對應一個顧客,可分多次支付(需要求解的問題是關於顧客的)
- 建立數據
import featuretools as ft import pandas as pd ### 構建簡單的數據表 customers = pd.DataFrame({'customer_id':[1,2],}) transactions = pd.DataFrame({'transaction_id':[1,2,3,4,5], 'customer_id':[1,1,1,2,2], \ 'amount':[3.,8.,6.,4.,9.]}) payments = pd.DataFrame({'payment_id':[1,2,3,4,5,6,7,8], 'transaction_id':[1,1,2,3,3,4,4,5], \ 'money':[3,7,6,5,8,2,4,7]}) ### 建立數據表之間的關系 es = ft.EntitySet('example1') es.entity_from_dataframe(dataframe=payments, entity_id='payments', index='payment_id') es.entity_from_dataframe(dataframe=transactions, entity_id='transactions', index='transaction_id') es.entity_from_dataframe(dataframe=customers, entity_id='customers', index='customer_id') r1 = ft.Relationship(es['customers']['customer_id'], es['transactions']['customer_id']) r2 = ft.Relationship(es['transactions']['transaction_id'], es['payments']['transaction_id']) es = es.add_relationship(r1) es = es.add_relationship(r2) print(es)
- 生成新的特征
# 自定義primitive # Featuretools內置了許多常用的primitive, 這里僅為了介紹Featuretools更多的特性 def plusOne(column): return column+1 plus_one = ft.primitives.make_trans_primitive(function=plusOne, input_types=[ft.variable_types.Numeric],\ return_type=ft.variable_types.Numeric) def maximum(column): return max(column) Maximum = ft.primitives.make_agg_primitive(function=maximum, input_types=[ft.variable_types.Numeric], \ return_type=ft.variable_types.Numeric) # max_depth控制轉換和聚合的次數 feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity="customers", trans_primitives=[plus_one], \ agg_primitives=["sum", Maximum], max_depth=3) print(feature_defs)
以特征SUM(transactions.PLUSONE(MAXIMUM(payments.money)))為例,下圖說明了對customer_id=1的顧客該特征是如何計算的:
2. 顧客交易記錄,每個交易對應一個顧客,可分多次支付(需要求解的問題是關於交易的)
- 同上,僅改動一行代碼:
feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity="transactions", trans_primitives=[plus_one], \ agg_primitives=["sum", Maximum], max_depth=3)
以特征customers.PLUSONE(SUM(payments.money))為例,下圖說明了對transaction_id=1的交易該特征是如何計算的:
3. 顧客交易記錄,每個交易對應一個顧客和一個商品(需要求解的問題是關於顧客的)
- 建立數據
customers = pd.DataFrame({'customer_id':[1,2],}) transactions = pd.DataFrame({'transaction_id':[1,2,3,4,5], 'customer_id':[1,1,1,2,2], \ 'amount':[3.,8.,6.,4.,9.], 'product_id':[1,2,3,1,2]}) products = pd.DataFrame({'product_id':[1,2,3]}) ### 建立數據表之間的關系 es = ft.EntitySet('example') es.entity_from_dataframe(dataframe=products, entity_id='products', index='product_id') es.entity_from_dataframe(dataframe=transactions, entity_id='transactions', index='transaction_id') es.entity_from_dataframe(dataframe=customers, entity_id='customers', index='customer_id') r1 = ft.Relationship(es['customers']['customer_id'], es['transactions']['customer_id']) r2 = ft.Relationship(es['products']['product_id'], es['transactions']['product_id']) es = es.add_relationship(r1) es = es.add_relationship(r2) print(es)
-
生成新的特征
def plusOne(column): return column+1 plus_one = ft.primitives.make_trans_primitive(function=plusOne, input_types=[ft.variable_types.Numeric],\ return_type=ft.variable_types.Numeric) def maximum(column): return max(column) Maximum = ft.primitives.make_agg_primitive(function=maximum, input_types=[ft.variable_types.Numeric], \ return_type=ft.variable_types.Numeric) feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity="customers", trans_primitives=[plus_one], \ agg_primitives=["sum", Maximum], max_depth=3) print(feature_defs)
以特征SUM(transactions.products.MAXIMUM(transactions.amount))為例,下圖說明了對customer_id=1的顧客該特征是如何計算的:
Featuretools的一個重要特性是可以在建立特征工程時自動考慮時間的影響,防止數據泄露。下面仍以一個簡單的例子進行說明,同上仍為顧客交易記錄,每個交易對應一個顧客和一個商品,但是需要求解的問題是關於顧客在某個時間點的情況。
- 建立數據
import featuretools as ft import pandas as pd ### 構建交易數據表 transactions = pd.DataFrame({'transaction_id':[1,2,3,4,5,6], 'customer_id':[1,1,1,2,3,3], 'product_id':[1,2,1,1,2,2], \ 'time':[pd.Timestamp('1/1/2019')+pd.Timedelta(x,'h') for x in [1,2,3,4,5,6]], \ 'amount':[3., 8., 10., 4., 12., 9]}) #加入了交易時間 products = pd.DataFrame({'product_id':[1,2]}) ### 對每個顧客,定義對應的預測時間 cutoff_times = pd.DataFrame({'customer_id':[1,2,3],'time':[pd.Timestamp('1/1/2019')+pd.Timedelta(x,'h') for x in [2,4,6]]}) ### 從原始數據表中生成新的數據表並建立關系 es = ft.EntitySet('example') es.entity_from_dataframe(dataframe=transactions, entity_id='transactions', index='transaction_id', time_index='time') es.normalize_entity(base_entity_id='transactions', new_entity_id='customers',index='customer_id') es.normalize_entity(base_entity_id='transactions', new_entity_id='products',index='product_id') print(es)
- 生成新的特征
feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity="customers", agg_primitives=["max","sum"], \ max_depth=3, cutoff_time=cutoff_times) #添加了cutoff_time這一參數 print(feature_defs)
下圖以特征SUM(transactions.products.MAX(transactions.amount))為例,說明建立特征時如何考慮了時間的影響