需求
1.統計音樂點播次數
2.使用echarts柱狀圖顯示每首音樂的點播次數
項目結構
創建JavaEE項目

統計播放次數Job關鍵代碼
package com.etc.mc;
import java.io.IOException;
import java.util.HashMap;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/** 歌曲點播統計 */
public class MusicCount {
//定義保存統計數據結果的map集合
public static HashMap<String, Integer> map=new HashMap<String, Integer>();
public static class MusicMapper extends Mapper<Object, Text, Text, IntWritable> {
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
IntWritable valueOut = new IntWritable(1);
String keyInStr = value.toString();
String[] keyInStrArr = keyInStr.split("\t");// 使用\t將輸入 文本行轉換為字符串
String keyOut = keyInStrArr[0];// 獲取歌曲名稱
context.write(new Text(keyOut), valueOut);
}
}
public static class MusicReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);//統計數據保存到hdfs文件
map.put(key.toString(), sum);//將統計結果保存到map集合
}
}
public static HashMap<String, Integer> main() throws Exception {
Configuration conf = new Configuration();
conf.addResource("core-site.xml");// 讀取項目中hdfs配置信息
conf.addResource("mapred-site.xml");// 讀取項目中mapreduce配置信息
// 實例化作業
Job job = Job.getInstance(conf, "music_count");
// 指定jar的class
job.setJarByClass(MusicCount.class);
// 指定Mapper
job.setMapperClass(MusicMapper.class);
// 壓縮數據
job.setCombinerClass(MusicReducer.class);// 減少datanode,TaskTracker之間數據傳輸
// 指定reducer
job.setReducerClass(MusicReducer.class);
// 設置輸出key數據類型
job.setOutputKeyClass(Text.class);
// 設置輸出Value數據類型
job.setOutputValueClass(IntWritable.class);
// 設置輸入文件路徑
FileInputFormat.addInputPath(job, new Path("hdfs://192.168.137.131:9000/music/music1.txt"));
FileInputFormat.addInputPath(job, new Path("hdfs://192.168.137.131:9000/music/music2.txt"));
FileInputFormat.addInputPath(job, new Path("hdfs://192.168.137.131:9000/music/music3.txt"));
FileInputFormat.addInputPath(job, new Path("hdfs://192.168.137.131:9000/music/music4.txt"));
//設置輸出文件路徑
FileSystem fs=FileSystem.get(conf);
Path path=new Path("hdfs://192.168.137.131:9000/musicout");
if(fs.exists(path)) {
fs.delete(path,true);
}
FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.137.131:9000/musicout"));
if(job.waitForCompletion(true)) {
return map;
}else {
return null;
}
}
}
Servlet關鍵代碼
package com.etc.action;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.HashMap;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.alibaba.fastjson.JSON;
import com.etc.mc.MusicCount;
/**向客戶端提供json數據*/
@WebServlet("/CountServlet")
public class CountServlet extends HttpServlet {
private static final long serialVersionUID = 1L;
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
//post亂碼處理
request.setCharacterEncoding("utf-8");
// 設置響應數據類型
response.setContentType("text/html");
// 設置響應編碼格式
response.setCharacterEncoding("utf-8");
// 獲取out對象
PrintWriter out = response.getWriter();
//組織json數據
HashMap<String, Integer> map=null;
try {
map=MusicCount.main();
} catch (Exception e) {
System.out.println("獲取數據出錯");
}
//通過構建map集合轉換為嵌套json格式數據
HashMap jsonmap = new HashMap();
jsonmap.put("mytitle","歌詞播放統計");
jsonmap.put("mylegend", "點播");
jsonmap.put("prolist", map);
String str =JSON.toJSONString(jsonmap);
out.print(str);
out.flush();
out.close();
}
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
doGet(request, response);
}
}
視圖index.jsp關鍵代碼
<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>金融大數據解析</title>
<!-- 引入 echarts.js -->
<script src="script/echarts.min.js"></script>
<!-- 引入 jquery.js -->
<script src="script/jquery-1.8.3.min.js"></script>
</head>
<body>
<!-- 為ECharts准備一個具備大小(寬高)的Dom -->
<div id="main" style="width: 600px; height: 400px;"></div>
<script type="text/javascript">
//顯示柱狀圖函數
function showdata(mytitle, mylegend, xdata, ydata) {
// 基於准備好的dom,初始化echarts實例
var myChart = echarts.init(document.getElementById('main'));
// 指定圖表的配置項和數據
var option = {
title : {
text : mytitle
},
tooltip : {},
legend : {
data : mylegend
},
xAxis : {
data : xdata
},
yAxis : {},
series : [ {
name : '點播',
type : 'bar',
data : ydata
} ]
};
// 使用剛指定的配置項和數據顯示圖表。
myChart.setOption(option);
}
$(function() {
var mytitle;
var mylegend;
var xdata=new Array();
var ydata=new Array();
$.getJSON("CountServlet", function(data) {
mytitle = data.mytitle;
mylegend = data.mylegend;
//獲取x軸數據
$.each(data.prolist, function(i, n) {
xdata.push(i);
});
//獲取y軸數據
$.each(data.prolist, function(i, n) {
ydata.push(n);
});
//執行函數
showdata(mytitle, [ mylegend ], xdata, ydata);
});
});
</script>
</body>
</html>
運行結果

項目所需jar列表

總結
1.該案例的缺點是什么?每次訪問數據需要提交job到hadoop集群運行,性能低。
2.數據分析結果保存在HDFS和集合中,不適合分析結果為大數據集合。
3.如何改進?使用HBase存儲解析后的數據集,構建離線分析和即時查詢大數據分析平台。
