Python程序中的進程操作-進程間數據共享(multiprocess.Manager)


一、進程之間的數據共享

展望未來,基於消息傳遞的並發編程是大勢所趨

即便是使用線程,推薦做法也是將程序設計為大量獨立的線程集合,通過消息隊列交換數據。

這樣極大地減少了對使用鎖定和其他同步手段的需求,還可以擴展到分布式系統中。

但進程間應該盡量避免通信,即便需要通信,也應該選擇進程安全的工具來避免加鎖帶來的問題。

以后我們會嘗試使用數據庫來解決現在進程之間的數據共享問題。

1.1 Manager模塊介紹

進程間數據是獨立的,可以借助於隊列或管道實現通信,二者都是基於消息傳遞的。

雖然進程間數據獨立,但可以通過Manager實現數據共享,事實上Manager的功能遠不止於此。

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.

1.2 Manager例子

from multiprocessing import Manager,Process,Lock
def work(d,lock):
    with lock:  # 不加鎖而操作共享的數據,肯定會出現數據錯亂
        d['count']-=1

if __name__ == '__main__':
    lock=Lock()
    with Manager() as m:
        dic=m.dict({'count':100})
        p_l=[]
        for i in range(100):
            p=Process(target=work,args=(dic,lock))
            p_l.append(p)
            p.start()
        for p in p_l:
            p.join()
        print(dic)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM