Django中的prefetch_related()函數優化


對於多對多字段(ManyToManyField)和一對多字段, 可以使用prefetch_related()來進行優化

prefetch_related()和select_related()的設計目的很相似,都是為了減少SQL查詢的數量,但是實現的方式不一樣。后者是通過JOIN語句,在SQL查詢內解決問題。但是對於多對多關系,使用SQL語句解決就顯得有些不太明智,因為JOIN得到的表將會很長,會導致SQL語句運行時間的增加和內存占用的增加。若有n個對象,每個對象的多對多字段對應Mi條,就會生成Σ(n)Mi 行的結果表。prefetch_related()的解決方法是,分別查詢每個表,然后用Python處理他們之間的關系。繼續以上邊的例子進行說明,如果我們要獲得張三所有去過的城市,使用prefetch_related()應該是這么做:

zhangs = Person.objects.prefetch_related('visitation').get(firstname=u"張",lastname=u"三")
>>> for city in zhangs.visitation.all() :
...   print city

 上述代碼觸發的SQL查詢如下:

SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`
WHERE (`QSOptimize_person`.`lastname` = '三'  AND `QSOptimize_person`.`firstname` = '張');
 
SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1);

 

第一條SQL查詢僅僅是獲取張三的Person對象,第二條比較關鍵,它選取關系表`QSOptimize_person_visitation`中`person_id`為張三的行,然后和`city`表內聯(INNER JOIN 也叫等值連接)得到結果表。

  1. + ----+-----------+----------+-------------+-----------+
  2. | id | firstname | lastname | hometown_id | living_id |
  3. + ----+-----------+----------+-------------+-----------+
  4. | 1 | 張 | 三 | 3 | 1 |
  5. + ----+-----------+----------+-------------+-----------+
  6. 1 row in set (0.00 sec)
  7.  
  8. + -----------------------+----+-----------+-------------+
  9. | _prefetch_related_val | id | name | province_id |
  10. + -----------------------+----+-----------+-------------+
  11. | 1 | 1 | 武漢市 | 1 |
  12. | 1 | 2 | 廣州市 | 2 |
  13. | 1 | 3 | 十堰市 | 1 |
  14. + -----------------------+----+-----------+-------------+
  15. 3 rows in set (0.00 sec)

顯然張三武漢、廣州、十堰都去過。

又或者,我們要獲得湖北的所有城市名,可以這樣:

  1. >>> hb = Province.objects.prefetch_related('city_set').get(name__iexact=u"湖北省")
  2. >>> for city in hb.city_set.all():
  3. ... city.name
  4. ...
觸發的SQL查詢:
  1. SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
  2. FROM `QSOptimize_province`
  3. WHERE `QSOptimize_province`.`name` LIKE '湖北省' ;
  4.  
  5. SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  6. FROM `QSOptimize_city`
  7. WHERE `QSOptimize_city`.`province_id` IN (1);
得到的表:
+----+-----------+ | id | name | +----+-----------+ | 1 | 湖北省 | +----+-----------+ 1 row in set (0.00 sec) +----+-----------+-------------+ | id | name | province_id | +----+-----------+-------------+ | 1 | 武漢市 | 1 | | 3 | 十堰市 | 1 | +----+-----------+-------------+ 2 rows in set (0.00 sec)
我們可以看見,prefetch使用的是 IN 語句實現的。這樣,在QuerySet中的對象數量過多的時候,根據數據庫特性的不同有可能造成性能問題。

使用方法

*lookups 參數

prefetch_related()在Django < 1.7 只有這一種用法。和select_related()一樣,prefetch_related()也支持深度查詢,例如要獲得所有姓張的人去過的省:

  1. >>> zhangs = Person.objects.prefetch_related('visitation__province').filter(firstname__iexact=u'張')
  2. >>> for i in zhangs:
  3. ... for city in i.visitation.all():
  4. ... print city.province
  5. ...
觸發的SQL:
  1. SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
  2. `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
  3. FROM `QSOptimize_person`
  4. WHERE `QSOptimize_person`.`firstname` LIKE '張' ;
  5.  
  6. SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
  7. `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city`
  8. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  9. WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 4);
  10.  
  11. SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
  12. FROM `QSOptimize_province`
  13. WHERE `QSOptimize_province`.`id` IN (1, 2);
獲得的結果:
+----+-----------+----------+-------------+-----------+
| id | firstname | lastname | hometown_id | living_id | +----+-----------+----------+-------------+-----------+ | 1 | 張 | 三 | 3 | 1 | | 4 | 張 | 六 | 2 | 2 | +----+-----------+----------+-------------+-----------+ 2 rows in set (0.00 sec) +-----------------------+----+-----------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+-----------+-------------+ | 1 | 1 | 武漢市 | 1 | | 1 | 2 | 廣州市 | 2 | | 4 | 2 | 廣州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+-----------+-------------+ 4 rows in set (0.00 sec) +----+-----------+ | id | name | +----+-----------+ | 1 | 湖北省 | | 2 | 廣東省 | +----+-----------+ 2 rows in set (0.00 sec)
值得一提的是,鏈式prefetch_related會將這些查詢添加起來,就像1.7中的select_related那樣。

要注意的是,在使用QuerySet的時候,一旦在鏈式操作中改變了數據庫請求,之前用prefetch_related緩存的數據將會被忽略掉。這會導致Django重新請求數據庫來獲得相應的數據,從而造成性能問題。這里提到的改變數據庫請求指各種filter()、exclude()等等最終會改變SQL代碼的操作。而all()並不會改變最終的數據庫請求,因此是不會導致重新請求數據庫的。

舉個例子,要獲取所有人訪問過的城市中帶有“市”字的城市,這樣做會導致大量的SQL查詢:

  1. plist =Person.objects.prefetch_related( 'visitation')
  2. [p.visitation.filter(name__icontains= u"市")for p in plist]
因為數據庫中有4人,導致了2+4次SQL查詢:
  1. SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
  2. `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
  3. FROM `QSOptimize_person`;
  4.  
  5. SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
  6. `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  7. FROM `QSOptimize_city`
  8. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  9. WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 2, 3, 4);
  10.  
  11. SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  12. FROM `QSOptimize_city`
  13. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  14. WHERE(`QSOptimize_person_visitation`.`person_id` = 1 AND `QSOptimize_city`.`name` LIKE '%市%' );
  15.  
  16. SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  17. FROM `QSOptimize_city`
  18. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  19. WHERE (`QSOptimize_person_visitation`.`person_id` = 2 AND `QSOptimize_city`.`name` LIKE '%市%' );
  20.  
  21. SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  22. FROM `QSOptimize_city`
  23. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  24. WHERE (`QSOptimize_person_visitation`.`person_id` = 3 AND `QSOptimize_city`.`name` LIKE '%市%' );
  25.  
  26. SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  27. FROM `QSOptimize_city`
  28. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  29. WHERE (`QSOptimize_person_visitation`.`person_id` = 4 AND `QSOptimize_city`.`name` LIKE '%市%' );

眾所周知,QuerySet是lazy的,要用的時候才會去訪問數據庫。運行到第二行Python代碼時,for循環將plist看做iterator,這會觸發數據庫查詢。最初的兩次SQL查詢就是prefetch_related導致的。

雖然已經查詢結果中包含所有所需的city的信息,但因為在循環體中對Person.visitation進行了filter操作,這顯然改變了數據庫請求。因此這些操作會忽略掉之前緩存到的數據,重新進行SQL查詢。

但是如果有這樣的需求了應該怎么辦呢?在Django >= 1.7,可以通過下一節的Prefetch對象來實現,如果你的環境是Django < 1.7,可以在Python中完成這部分操作。

  1. plist = Person.objects.prefetch_related( 'visitation')
  2. [[city for city in p.visitation.all() if u"市" in city.name] for p in plist]
Prefetch對象

在Django >= 1.7,可以用Prefetch對象來控制prefetch_related函數的行為。

1.一個Prefetch對象只能指定一項prefetch操作。
2.Prefetch對象對字段指定的方式和prefetch_related中的參數相同,都是通過雙下划線連接的字段名完成的。
3.可以通過 queryset 參數手動指定prefetch使用的QuerySet。
4.可以通過 to_attr 參數指定prefetch到的屬性名。
5.Prefetch對象和字符串形式指定的lookups參數可以混用。

4. 最佳實踐

1.prefetch_related主要針一對多和多對多關系進行優化。
2.prefetch_related通過分別獲取各個表的內容,然后用Python處理他們之間的關系來進行優化。
3.可以通過可變長參數指定需要select_related的字段名。指定方式和特征與select_related是相同的。
4.在Django >= 1.7可以通過Prefetch對象來實現復雜查詢,但低版本的Django好像只能自己實現。
5.作為prefetch_related的參數,Prefetch對象和字符串可以混用。
6.prefetch_related的鏈式調用會將對應的prefetch添加進去,而非替換,似乎沒有基於不同版本上區別。
7.可以通過傳入None來清空之前的prefetch_related。

選擇哪個函數

如果我們想要獲得所有家鄉是湖北的人,最無腦的做法是先獲得湖北省,再獲得湖北的所有城市,最后獲得故鄉是這個城市的人。就像這樣:
  1. >>> hb = Province.objects.get(name__iexact=u"湖北省")
  2. >>> people = []
  3. >>> for city in hb.city_set.all():
  4. ... people.extend(city.birth.all())
  5. ...
顯然這不是一個明智的選擇,因為這樣做會導致1+(湖北省城市數)次SQL查詢。反正是個反例,導致的查詢和獲得掉結果就不列出來了。
prefetch_related() 或許是一個好的解決方法,讓我們來看看。
  1. >>> hb = Province.objects.prefetch_related("city_set__birth").objects.get(name__iexact=u"湖北省")
  2. >>> people = []
  3. >>> for city in hb.city_set.all():
  4. ... people.extend(city.birth.all())
  5. ...

因為是一個深度為2的prefetch,所以會導致3次SQL查詢:

  1. SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
  2. FROM `QSOptimize_province`
  3. WHERE `QSOptimize_province`.`name` LIKE '湖北省' ;
  4.  
  5. SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  6. FROM `QSOptimize_city`
  7. WHERE `QSOptimize_city`.`province_id` IN (1);
  8.  
  9. SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
  10. `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
  11. FROM `QSOptimize_person`
  12. WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);

嗯…看上去不錯,但是3次查詢么?倒過來查詢可能會更簡單?

>>> people = list(Person.objects.select_related("hometown__province").filter(hometown__province__name__iexact=u"湖北省"))
  1. SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
  2. `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`,
  3. `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
  4. FROM `QSOptimize_person`
  5. INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`)
  6. INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
  7. WHERE `QSOptimize_province`.`name` LIKE '湖北省';
  1. + ----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
  2. | id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |
  3. + ----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
  4. | 1 | 張 | 三 | 3 | 1 | 3 | 十堰市 | 1 | 1 | 湖北省 |
  5. | 2 | 李 | 四 | 1 | 3 | 1 | 武漢市 | 1 | 1 | 湖北省 |
  6. | 3 | 王 | 麻子 | 3 | 2 | 3 | 十堰市 | 1 | 1 | 湖北省 |
  7. + ----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
  8. 3 rows in set (0.00 sec)
完全沒問題。不僅SQL查詢的數量減少了,python程序上也精簡了。
select_related()的效率要高於prefetch_related()。因此,最好在能用select_related()的地方盡量使用它,也就是說,對於ForeignKey字段,避免使用prefetch_related()。
對於同一個QuerySet,你可以同時使用這兩個函數。在我們一直使用的例子上加一個model:Order (訂單)
  1. class Order(models.Model):
  2. customer = models.ForeignKey(Person)
  3. orderinfo = models.CharField(max_length= 50)
  4. time = models.DateTimeField(auto_now_add = True)
  5. def __unicode__(self):
  6. return self.orderinfo

如果我們拿到了一個訂單的id 我們要知道這個訂單的客戶去過的省份。因為有ManyToManyField顯然必須要用prefetch_related()。如果只用prefetch_related()會怎樣呢?

  1. >>> plist = Order.objects.prefetch_related('customer__visitation__province').get(id=1)
  2. >>> for city in plist.customer.visitation.all():
  3. ... print city.province.name
  4. ...

顯然,關系到了4個表:Order、Person、City、Province,根據prefetch_related()的特性就得有4次SQL查詢

  1. SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`
  2. FROM `QSOptimize_order`
  3. WHERE `QSOptimize_order`.`id` = 1 ;
  4.  
  5. SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
  6. FROM `QSOptimize_person`
  7. WHERE `QSOptimize_person`.`id` IN (1);
  8.  
  9. SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
  10. `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  11. FROM `QSOptimize_city`
  12. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  13. WHERE `QSOptimize_person_visitation`.`person_id` IN (1);
  14.  
  15. SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
  16. FROM `QSOptimize_province`
  17. WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+
| id | customer_id | orderinfo | time | +----+-------------+---------------+---------------------+ | 1 | 1 | Info of Order | 2014-08-10 17:05:48 | +----+-------------+---------------+---------------------+ 1 row in set (0.00 sec) +----+-----------+----------+-------------+-----------+ | id | firstname | lastname | hometown_id | living_id | +----+-----------+----------+-------------+-----------+ | 1 | 張 | 三 | 3 | 1 | +----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+--------+-------------+ | 1 | 1 | 武漢市 | 1 | | 1 | 2 | 廣州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ | id | name | +----+--------+ | 1 | 湖北省 | | 2 | 廣東省 | +----+--------+ 2 rows in set (0.00 sec)

更好的辦法是先調用一次select_related()再調用prefetch_related(),最后再select_related()后面的表

  1. >>> plist = Order.objects.select_related('customer').prefetch_related('customer__visitation__province').get(id=1)
  2. >>> for city in plist.customer.visitation.all():
  3. ... print city.province.name
  4. ...

這樣只會有3次SQL查詢,Django會先做select_related,之后prefetch_related的時候會利用之前緩存的數據,從而避免了1次額外的SQL查詢:

  1. SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`,
  2. `QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
  3. `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
  4. FROM `QSOptimize_order`
  5. INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`)
  6. WHERE `QSOptimize_order`.`id` = 1 ;
  7.  
  8. SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
  9. `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
  10. FROM `QSOptimize_city`
  11. INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
  12. WHERE `QSOptimize_person_visitation`.`person_id` IN (1);
  13.  
  14. SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
  15. FROM `QSOptimize_province`
  16. WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
| id | customer_id | orderinfo | time | id | firstname | lastname | hometown_id | living_id | +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ | 1 | 1 | Info of Order | 2014-08-10 17:05:48 | 1 | 張 | 三 | 3 | 1 | +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+--------+-------------+ | 1 | 1 | 武漢市 | 1 | | 1 | 2 | 廣州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ | id | name | +----+--------+ | 1 | 湖北省 | | 2 | 廣東省 | +----+--------+ 2 rows in set (0.00 sec)

值得注意的是,可以在調用prefetch_related之前調用select_related,並且Django會按照你想的去做:先select_related,然后利用緩存到的數據prefetch_related。然而一旦prefetch_related已經調用,select_related將不起作用。

小結

  1. 因為select_related()總是在單次SQL查詢中解決問題,而prefetch_related()會對每個相關表進行SQL查詢,因此select_related()的效率通常比后者高。
  2. 鑒於第一條,盡可能的用select_related()解決問題。只有在select_related()不能解決問題的時候再去想prefetch_related()。
  3. 你可以在一個QuerySet中同時使用select_related()和prefetch_related(),從而減少SQL查詢的次數。
  4. 只有prefetch_related()之前的select_related()是有效的,之后的將會被無視掉。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM