sklearn已經提供了很多轉換器,如果想自定義轉換器,可以定義一個新的類並且實現其fit(),transform(),fit_transform()三個方法。
添加TransformerMixin作為基類,會直接得到fit_transform()方法;
添加BaseEstimator作為基類,可以獲得兩個自動調整超參數的方法:get_params()和set_params()
#自定義轉換器,添加新的屬性 from sklearn.base import BaseEstimator,TransformerMixin rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6 class CombinedAttributesAdder(BaseEstimator,TransformerMixin): def __init__(self,add_bedrooms_per_room=True): self.add_bedrooms_per_room=add_bedrooms_per_room def fit(self,X,y=None): return delf def transform(self,X,y=None): rooms_per_household=X[:,rooms_ix]/X[:,household_ix] population_per_household=X[:,population_ix]/X[:,household_ix] if self.add_bedrooms_per_room: bedrooms_per_room=X[:,bedrooms_ix]/X[:,rooms_ix] return np.c_[X,rooms_per_household,population_per_household,bedrooms_per_room] else: return np.c_[X,rooms_per_household,population_per_household] attr_adder=CombinedAttributesAdder(add_bedrooms_per_room=True) housing_extra_attribs=attr_adder.transform(housing.values)
pd.DataFrame(housing_extra_attribs,columns=['longitude', 'latitude', 'housing_median_age', 'total_rooms',
'total_bedrooms', 'population', 'households', 'median_income',
'ocean_proximity','rooms_per_household','population_per_household','bedrooms_per_room']).head()
輸出為:
原來的訓練集為:
多了三個屬性:rooms_per_household,population_per_household,bedrooms_per_room