雪花算法根據時間戳生成有序的 64 bit 的 Long 類型的唯一 ID
各 bit 含義:
- 1 bit: 符號位,0 是正數 1 是負數, ID 為正數,所以恆取 0
- 41 bit: 時間差,我們可以選擇一個參考點,用它來計算與當前時間的時間差 (毫秒數),41 bit 存儲時間差,足夠使用 69 年
- 10 bit: 機器碼,能編碼 1024 台機器;可以手動指定含義,比如前5 bit 作為機器編號、后 5 bit 作為進程編號
- 12 bit: 序列號,同一機器同一毫秒內產生不同的序列號,12 bit 可以支持 4096 個序列號
優點:
- 靈活配置:機器碼可以根據需求靈活配置含義
- 無需持久化:如果序號自增往往需要持久化,本算法不需要持久化
- ID 有含義/可逆性:ID 可以反解出來,對 ID 進行統計分析,可以很簡單的分析出整個系統的繁忙曲線,還可以定位到每個機器,在某段時間承擔了多少工作,分析出負載均衡情況
- 高性能:生成速度很快
public class Snowflake {
/**
* 每一部分所占位數
*/
private final long unusedBits = 1L;
private final long timestampBits = 41L;
private final long datacenterIdBits = 5L;
private final long workerIdBits = 5L;
private final long sequenceBits = 12L;
/**
* 向左的位移
*/
private final long timestampShift = sequenceBits + datacenterIdBits + workerIdBits;
private final long datacenterIdShift = sequenceBits + workerIdBits;
private final long workerIdShift = sequenceBits;
/**
* 起始時間戳,初始化后不可修改
*/
private final long epoch = 1451606400000L; // 2016-01-01
/**
* 數據中心編碼,初始化后不可修改
* 最大值: 2^5-1 取值范圍: [0,31]
*/
private final long datacenterId;
/**
* 機器或進程編碼,初始化后不可修改
* 最大值: 2^5-1 取值范圍: [0,31]
*/
private final long workerId;
/**
* 序列號
* 最大值: 2^12-1 取值范圍: [0,4095]
*/
private long sequence = 0L;
/** 上次執行生成 ID 方法的時間戳 */
private long lastTimestamp = -1L;
/*
* 每一部分最大值
*/
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // 2^5-1
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); // 2^5-1
private final long maxSequence = -1L ^ (-1L << sequenceBits); // 2^12-1
/**
* 生成序列號
*/
public synchronized long nextId() {
long currTimestamp = timestampGen();
if (currTimestamp < lastTimestamp) {
throw new IllegalStateException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - currTimestamp));
}
if (currTimestamp == lastTimestamp) {
sequence = (sequence + 1) & maxSequence;
if (sequence == 0) { // overflow: greater than max sequence
currTimestamp = waitNextMillis(currTimestamp);
}
} else { // reset to 0 for next period/millisecond
sequence = 0L;
}
// track and memo the time stamp last snowflake ID generated
lastTimestamp = currTimestamp;
return ((currTimestamp - epoch) << timestampShift) | //
(datacenterId << datacenterIdShift) | //
(workerId << workerIdShift) | // new line for nice looking
sequence;
}
public Snowflake(long datacenterId, long workerId) {
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
this.datacenterId = datacenterId;
this.workerId = workerId;
}
/**
* 追蹤調用 waitNextMillis 方法的次數
*/
private final AtomicLong waitCount = new AtomicLong(0);
public long getWaitCount() {
return waitCount.get();
}
/**
* 循環阻塞直到下一秒
*/
protected long waitNextMillis(long currTimestamp) {
waitCount.incrementAndGet();
while (currTimestamp <= lastTimestamp) {
currTimestamp = timestampGen();
}
return currTimestamp;
}
/**
* 獲取當前時間戳
*/
public long timestampGen() {
return System.currentTimeMillis();
}
}
完整代碼:GitHub