HA集群(高可用)安裝部署


1 運行環境

1軟件環境

三個節點
OS:64位RHEL5及以上或者64位CentOS6.0及以上
JVM:預裝64位JDK 1.8及以上版本

2 安裝准備

2.1准備虛擬機

准備三個節點的虛擬機

2.2 修改主機名

在各個節點執行以下操作來修改主機名,使集群下的主機有格式一個統一的主機名,以便后續的操作和維護。
修改主機名
vi /etc/sysconfig/network
192.168.xx.210 ha01
(其它倆台分別修改自己的ha02 ha03)
修改host映射:

vi /etc/hosts

192.168.xx.210  ha01
192.168.xx.220  ha02
192.168.xx.230  ha03

2.3 關閉防火牆

service iptables stop
chkconfig iptables off

2.4 配置時間同步

配置時間同步

2.5 配置ssh免秘登錄

配置免密登陸

2.6 安裝jdk

jdk安裝步驟

3 安裝其他組件

3.1 安裝zookeeper和hadoop

安裝zookeeper
安裝hadoop

3.2 安裝高可用hadoop

hadoop部分的配置分為兩部分hdfs和yarn。

3.2.1 HDFS

修改配置文件
修改core-site.xml(如果文件不存在,但是core-site.xml.template文件存在,則先修改文件名,執行mv core-site.xml.template core-site.xml)

vi /usr /local/hadoop-2.7.3/etc/hadoop/core-site.xml

修改為以下內容:

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://beh</value>
    <final>false</final>
  </property>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/usr/local/hadoopdata</value>
    <final>false</final>
  </property>
  <property>
    <name>ha.zookeeper.quorum</name>
    <value>ha01:2181,ha02:2181,ha03:2181</value>
    <final>false</final>
  </property>
</configuration>

修改hdfs-site.xml

vi /usr/local/hadoop-2.7.3/etc/hadoop/hdfs-site.xml

修改為以下內容:

<configuration>
  <property>
    <name>dfs.nameservices</name>
    <value>beh</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.ha.namenodes.beh</name>
    <value>nn1,nn2</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.beh.nn1</name>
    <value>ha01:9000</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.namenode.http-address.beh.nn1</name>
    <value>ha01:50070</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.beh.nn2</name>
    <value>ha02:9000</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.namenode.http-address.beh.nn2</name>
    <value>ha02:50070</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.namenode.shared.edits.dir</name>
    <value>qjournal://ha01:8485;ha02:8485;ha03:8485/beh</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.ha.automatic-failover.enabled.beh</name>
    <value>true</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.client.failover.proxy.provider.beh</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.journalnode.edits .dir</name>
    <value>/usr/local/metadata/journal</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.ha.fencing.methods</name>
    <value>sshfence
shell(/bin/true)
</value>
    <final>false</final>
  </property>
  <property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/usr/local/.ssh/id_rsa</value>
    <final>true</final>
  </property>
  <property>
    <name>dfs.replication</name>
    <value>2</value>
    <final>false</final>
  </property> 
<configuration>

修改slaves

vi /usr/local/hadoop-2.7.3/etc/hadoop/slaves

修改為以下內容:

ha02
ha03

3.2.2 YARN

修改mapred-site.xml

vi /usr/local/hadoop2.7.3/etc/hadoop/mapred-site.xml

修改為以下內容:

  <configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>ha02:10020</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>ha03:19888</value>
    </property>
    <property>
        <name>yarn.app.mapreduce.am.staging-dir</name>
    <value>/usr/local/metadata/hadoop-yarn/staging</value>
    </property>
    </configuration>

修改yarn-site.xml

vi /usr/local/hadoop2.7.3/etc/hadoop/yarn-site.xml

修改為以下內容:

<configuration>
<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
    <name>yarn.nodemanager.local-dirs</name>
    <value>/usr/local/metadata/yarn</value>
</property>
<property>
    <name>yarn.nodemanager.log-dirs</name>
    <value>/usr/local/logs/yarn/userlogs</value>
</property>
<property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
</property>
<property>
    <description>Where to aggregate logs</description>
    <name>yarn.nodemanager.remote-app-log-dir</name>
    <value>hdfs://beh/var/log/hadoop-yarn/apps</value>
</property>
<!-- Resource Manager Configs -->
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
    <value>2000</value>
</property>
<property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
    <value>true</value>
</property>
<property>
    <name>yarn.resourcemanager.cluster-id</name>
    <value>beh</value>
</property>
<property>
    <name>yarn.resourcemanager.ha.rm-ids</name>
    <value>rm1,rm2</value>
</property>

  <!--RM1 RM2 is different-->
<property>
    <name>yarn.resourcemanager.ha.id</name>
    <value>rm1</value>
</property>
<property>
    <name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>
    <name>yarn.resourcemanager.recovery.enabled</name>
    <value>true</value>
</property>
<property>
    <name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk.state-store.address</name>
<value>ha01:2181,ha02:2181,ha03:2181</value>
</property>
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
    <value>5000</value>
</property>
<!-- RM1 configs -->
<property>
    <name>yarn.resourcemanager.address.rm1</name>
    <value>ha01:23140</value>
</property>
<property>
    <name>yarn.resourcemanager.scheduler.address.rm1</name>
    <value>ha01:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm1</name>
    <value>ha01:23189</value>
</property>
<property>
    <name>yarn.resourcemanager.webapp.address.rm1</name>
    <value>ha01:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
    <value>ha01:23125</value>
</property>
<property>
    <name>yarn.resourcemanager.admin.address.rm1</name>
    <value>ha01:23141</value>
</property>
<!-- RM2 configs -->
<property>
    <name>yarn.resourcemanager.address.rm2</name>
    <value>ha02:23140</value>
</property>
<property>
    <name>yarn.resourcemanager.scheduler.address.rm2</name>
    <value>ha02:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm2</name>
   <value>ha02:23189</value>
</property>
<property>
    <name>yarn.resourcemanager.webapp.address.rm2</name>
    <value>ha02:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
    <value>ha02:23125</value>
</property>
<property>
    <name>yarn.resourcemanager.admin.address.rm2</name>
    <value>ha02:23141</value>
</property>
<!-- Node Manager Configs -->
<property>
    <name>mapreduce.shuffle.port</name>
    <value>23080</value>
</property>
<property>
    <name>yarn.resourcemanager.zk-address</name>
<value>ha01:2181,ha02:2181,ha03:2181</value>
</property>
</configuration>

修改環境變量

vim /usr/local/hadoop-2.7.3/etc/hadoop/hadoop-env.sh
vim /usr/local/hadoop-2.7.3/etc/hadoop/yarn-env.sh

修改為以下內容:

export JAVA_HOME=/usr/local/jdk1.8.0_102

3.2.3 分發配置文件

scp -r /usr/local/hadoop2.7.3 ha02:/usr/local
scp -r /usr/local/hadoop2.7.3 ha03:/usr/local

注:將以上配置復制到所有節點

3.2.4 啟動HDFS

啟動journalnode(進程名:JournalNode)

sbin/hadoop-daemon.sh start journalnode

格式化zookeeper,在ha01上執行

hdfs zkfc -formatZK

對ha01節點進行格式化和啟動啟動namenode(進程名:NameNode):

hdfs namenode -format
sbin/hadoop-daemon.sh start namenode

對ha02節點進行格式化和啟動

hdfs namenode -bootstrapStandby
sbin/hadoop-daemon.sh start namenode

在ha01和ha02上啟動zkfc服務(zkfc服務進程名:DFSZKFailoverController):此時ha01和ha02就會有一個節點變為active狀態

sbin/hadoop-daemon.sh start zkfc

啟動datanode(進程名:DataNode):在ha01上執行

sbin/hadoop-daemons.sh start datanode

3.2.5 驗證是否成功

打開瀏覽器,訪問 hadoop1:50070 以及 hadoop2:50070,你將會看到兩個namenode一個是active而另一個是standby。
然后kill掉其中active的namenode進程,另一個standby的naemnode將會自動轉換為active狀態
hadoop01:50070hadoop01的ip:50070
在這里插入圖片描述
hadoop02:50070hadoop02的ip:50070
在這里插入圖片描述


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM